678 research outputs found

    Salivary Gland Hypofunction and/or Xerostomia Induced by Nonsurgical Cancer Therapies:ISOO/MASCC/ASCO Guideline

    Get PDF
    PURPOSE: To provide evidence-based recommendations for prevention and management of salivary gland hypofunction and xerostomia induced by nonsurgical cancer therapies. METHODS: Multinational Association of Supportive Care in Cancer/International Society of Oral Oncology (MASCC/ISOO) and ASCO convened a multidisciplinary Expert Panel to evaluate the evidence and formulate recommendations. PubMed, EMBASE, and Cochrane Library were searched for randomized controlled trials published between January 2009 and June 2020. The guideline also incorporated two previous systematic reviews conducted by MASCC/ISOO, which included studies published from 1990 through 2008. RESULTS: A total of 58 publications were identified: 46 addressed preventive interventions and 12 addressed therapeutic interventions. A majority of the evidence focused on the setting of radiation therapy for head and neck cancer. For the prevention of salivary gland hypofunction and/or xerostomia in patients with head and neck cancer, there is high-quality evidence for tissue-sparing radiation modalities. Evidence is weaker or insufficient for other interventions. For the management of salivary gland hypofunction and/or xerostomia, intermediate-quality evidence supports the use of topical mucosal lubricants, saliva substitutes, and agents that stimulate the salivary reflex. RECOMMENDATIONS: For patients who receive radiation therapy for head and neck cancer, tissue-sparing radiation modalities should be used when possible to reduce the risk of salivary gland hypofunction and xerostomia. Other risk-reducing interventions that may be offered during radiation therapy for head and neck cancer include bethanechol and acupuncture. For patients who develop salivary gland hypofunction and/or xerostomia, interventions include topical mucosal lubricants, saliva substitutes, and sugar-free lozenges or chewing gum. For patients with head and neck cancer, oral pilocarpine and oral cevimeline, acupuncture, or transcutaneous electrostimulation may be offered after radiation therapy.Additional information can be found at www.asco.org/supportive-care-guidelines

    Rituximab versus intravenous cyclophosphamide in patients with connective tissue disease-associated interstitial lung disease in the UK (RECITAL): a double-blind, double-dummy, randomised, controlled, phase 2b trial

    Get PDF
    BACKGROUND: Rituximab is often used as rescue therapy in interstitial lung disease (ILD) associated with connective tissue disease (CTD), but has not been studied in clinical trials. This study aimed to assess whether rituximab is superior to cyclophosphamide as a treatment for severe or progressive CTD associated ILD. METHODS: We conducted a randomised, double-blind, double-dummy, phase 2b trial to assess the superiority of rituximab compared with cyclophosphamide. Patients aged 18-80 years with severe or progressive ILD related to scleroderma, idiopathic inflammatory myositis, or mixed CTD, recruited across 11 specialist ILD or rheumatology centres in the UK, were randomly assigned (1:1) to receive rituximab (1000 mg at weeks 0 and 2 intravenously) or cyclophosphamide (600 mg/m2 body surface area every 4 weeks intravenously for six doses). The primary endpoint was rate of change in forced vital capacity (FVC) at 24 weeks compared with baseline, analysed using a mixed-effects model with random intercepts, adjusted for baseline FVC and CTD type. Prespecified secondary endpoints reported in this Article were change in FVC at 48 weeks versus baseline; changes from baseline in 6 min walk distance, diffusing capacity of the lung for carbon monoxide (DLCO), physician-assessed global disease activity (GDA) score, and quality-of-life scores on the St George's Respiratory Questionnaire (SGRQ), King's Brief Interstitial Lung Disease (KBILD) questionnaire, and European Quality of Life Five-Dimension (EQ-5D) questionnaire at 24 and 48 weeks; overall survival, progression-free survival, and time to treatment failure; and corticosteroid use. All endpoints were analysed in the modified intention-to-treat population, which comprised all patients who received at least one dose of study drug. This trial is registered with ClinicalTrials.gov (NCT01862926). FINDINGS: Between Dec 1, 2014, and March 31, 2020, we screened 145 participants, of whom 101 participants were randomly allocated: 50 (50%) to receive cyclophosphamide and 51 (50%) to receive rituximab. 48 (96%) participants in the cyclophosphamide group and 49 (96%) in the rituximab group received at least one dose of treatment and were included in analyses; 43 (86%) participants in the cyclophosphamide group and 42 (82%) participants in the rituximab group completed 24 weeks of treatment and follow-up. At 24 weeks, FVC was improved from baseline in both the cyclophosphamide group (unadjusted mean increase 99 mL [SD 329]) and the rituximab group (97 mL [234]); in the adjusted mixed-effects model, the difference in the primary endpoint at 24 weeks was -40 mL (95% CI -153 to 74; p=0·49) between the rituximab group and the cyclophosphamide group. KBILD quality-of-life scores were improved at 24 weeks by a mean 9·4 points (SD 20·8) in the cyclophosphamide group and 8·8 points (17·0) in the rituximab group. No significant differences in secondary endpoints were identified between the treatment groups, with the exception of change in GDA score at week 48, which favoured cyclophosphamide (difference 0·90 [95% CI 0·11 to 1·68]). Improvements in lung function and respiratory-related quality-of-life measures were observed in both treatment groups. Lower corticosteroid exposure over 48 weeks of follow-up was recorded in the rituximab group. Two (4%) of 48 participants who received cyclophosphamide and three (6%) of 49 who received rituximab died during the study, all due to complications of CTD or ILD. Overall survival, progression-free survival, and time to treatment failure did not significantly differ between the two groups. All participants reported at least one adverse event during the study. Numerically fewer adverse events were reported by participants receiving rituximab (445 events) than those receiving cyclophosphamide (646 events). Gastrointestinal and respiratory disorders were the most commonly reported adverse events in both groups. There were 62 serious adverse events of which 33 occurred in the cyclophosphamide group and 29 in the rituximab group. INTERPRETATION: Rituximab was not superior to cyclophosphamide to treat patients with CTD-ILD, although participants in both treatment groups had increased FVC at 24 weeks, in addition to clinically important improvements in patient-reported quality of life. Rituximab was associated with fewer adverse events. Rituximab should be considered as a therapeutic alternative to cyclophosphamide in individuals with CTD-ILD requiring intravenous therapy. FUNDING: Efficacy and Mechanism Evaluation Programme (Medical Research Council and National Institute for Health Research, UK)

    Widespread Aberrant Alternative Splicing despite Molecular Remission in Chronic Myeloid Leukaemia Patients

    Get PDF
    Vast transcriptomics and epigenomics changes are characteristic of human cancers, including leukaemia. At remission, we assume that these changes normalise so that omics-profiles resemble those of healthy individuals. However, an in-depth transcriptomic and epigenomic analysis of cancer remission has not been undertaken. A striking exemplar of targeted remission induction occurs in chronic myeloid leukaemia (CML) following tyrosine kinase inhibitor (TKI) therapy. Using RNA sequencing and whole-genome bisulfite sequencing, we profiled samples from chronic-phase CML patients at diagnosis and remission and compared these to healthy donors. Remarkably, our analyses revealed that abnormal splicing distinguishes remission samples from normal controls. This phenomenon is independent of the TKI drug used and in striking contrast to the normalisation of gene expression and DNA methylation patterns. Most remarkable are the high intron retention (IR) levels that even exceed those observed in the diagnosis samples. Increased IR affects cell cycle regulators at diagnosis and splicing regulators at remission. We show that aberrant splicing in CML is associated with reduced expression of specific splicing factors, histone modifications and reduced DNA methylation. Our results provide novel insights into the changing transcriptomic and epigenomic landscapes of CML patients during remission. The conceptually unanticipated observation of widespread aberrant alternative splicing after remission induction warrants further exploration. These results have broad implications for studying CML relapse and treating minimal residual disease

    Data to Action: Using Formative Research to Develop Intervention Programs to Increase Physical Activity in Adolescent Girls

    Get PDF
    Formative research is used to inform intervention development, but the processes of transmitting results to intervention planners and incorporating information into intervention designs are not well documented. The authors describe how formative research results from the Trial of Activity for Adolescent Girls (TAAG) were transferred to planners to guide intervention development. Methods included providing oral and written reports, prioritizing recommendations, and cross-checking recommendations with intervention objectives and implementation strategies. Formative work influenced the intervention in many ways. For example, results indicated that middle schools offered only coeducational physical education and health education classes, so the TAAG intervention was designed to be appropriate for both sexes, and intervention strategies were developed to directly address girls’ stated preferences (e.g., enjoyable activities, opportunity to socialize) and barriers (e.g., lack of skills, fear of injury) for physical activity. The challenges of using formative research for intervention development are discussed

    Phase IIb, Randomized, Double-Blind Trial of GC4419 Versus Placebo to Reduce Severe Oral Mucositis Due to Concurrent Radiotherapy and Cisplatin For Head and Neck Cancer

    Get PDF
    PURPOSE: Oral mucositis (OM) remains a common, debilitating toxicity of radiation therapy (RT) for head and neck cancer. The goal of this phase IIb, multi-institutional, randomized, double-blind trial was to compare the efficacy and safety of GC4419, a superoxide dismutase mimetic, with placebo to reduce the duration, incidence, and severity of severe OM (SOM). PATIENTS AND METHODS: A total of 223 patients (from 44 institutions) with locally advanced oral cavity or oropharynx cancer planned to be treated with definitive or postoperative intensity-modulated RT (IMRT; 60 to 72 Gy [≥ 50 Gy to two or more oral sites]) plus cisplatin (weekly or every 3 weeks) were randomly assigned to receive 30 mg (n = 73) or 90 mg (n = 76) of GC4419 or to receive placebo (n = 74) by 60-minute intravenous administration before each IMRT fraction. WHO grade of OM was assessed biweekly during IMRT and then weekly for up to 8 weeks after IMRT. The primary endpoint was duration of SOM tested for each active dose level versus placebo (intent-to-treat population, two-sided α of .05). The National Cancer Institute Common Terminology Criteria for Adverse Events, version 4.03, was used for adverse event grading. RESULTS: Baseline patient and tumor characteristics as well as treatment delivery were balanced. With 90 mg GC4419 versus placebo, SOM duration was significantly reduced (P = .024; median, 1.5 v 19 days). SOM incidence (43% v 65%; P = .009) and severity (grade 4 incidence, 16% v 30%; P = .045) also were improved. Intermediate improvements were seen with the 30-mg dose. Safety was comparable across arms, with no significant GC4419-specific toxicity nor increase of known toxicities of IMRT plus cisplatin. The 2-year follow-up for tumor outcomes is ongoing. CONCLUSION: GC4419 at a dose of 90 mg produced a significant, clinically meaningful reduction of SOM duration, incidence, and severity with acceptable safety

    Identification of novel loci associated with hip shape:a meta-analysis of genome-wide association studies

    Get PDF
    This study was funded by Arthritis Research UK project grant 20244, which also provided salary funding for DB and CVG. LP works in the MRC Integrative Epidemiology Unit, a UK MRC‐funded unit (MC_ UU_ 12013/4 & MC_UU_12013/5). ALSPAC: We are extremely grateful to all the families who took part in this study, the midwives for their help in recruiting them, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, and nurses. ALSPAC data collection was supported by the Wellcome Trust (grants WT092830M; WT088806; WT102215/2/13/2), UK Medical Research Council (G1001357), and University of Bristol. The UK Medical Research Council and the Wellcome Trust (102215/2/13/2) and the University of Bristol provide core support for ALSPAC. Framingham Heart Study: The Framingham Osteoporosis Study is supported by grants from the National Institute of Arthritis, Musculoskeletal, and Skin Diseases and the National Institute on Aging (R01 AR41398, R01 AR 061162, R01 AR050066, and R01 AR061445). The analyses reflect intellectual input and resource development from the Framingham Heart Study investigators participating in the SNP Health Association Resource project. The Framingham Heart Study of the National Heart, Lung, and Blood Institute of the National Institutes of Health and Boston University School of Medicine were supported by the National Heart, Lung, and Blood Institute's Framingham Heart Study (N01‐HC‐25195) and its contract with Affymetrix, Inc., for genotyping services (N02‐HL‐6‐4278). Analyses reflect intellectual input and resource development from the Framingham Heart Study investigators participating in the SNP Health Association Resource (SHARe) project. A portion of this research was conducted using the Linux Cluster for Genetic Analysis (LinGA‐II) funded by the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center. DK was also supported by Israel Science Foundation grant #1283/14. TDC and DR thank Dr Claire Reardon and the entire Harvard University Bauer Core facility for assistance with ATAC‐seq next generation sequencing. This work was funded in part by the Harvard University Milton Fund, NSF (BCS‐1518596), and NIH NIAMS (1R01AR070139‐01A1) to TDC. MrOS: The Osteoporotic Fractures in Men (MrOS) Study is supported by National Institutes of Health funding. The following institutes provide support: the National Institute on Aging (NIA), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Center for Advancing Translational Sciences (NCATS), and NIH Roadmap for Medical Research under the following grant numbers: U01 AG027810, U01 AG042124, U01 AG042139, U01 AG042140, U01 AG042143, U01 AG042145, U01 AG042168, U01 AR066160, and UL1 TR000128. The National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) provides funding for the MrOS ancillary study “Replication of candidate gene associations and bone strength phenotype in MrOS” under the grant number R01 AR051124. The National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) provides funding for the MrOS ancillary study “GWAS in MrOS and SOF” under the grant number RC2 AR058973. SOF: The Study of Osteoporotic Fractures (SOF) is supported by National Institutes of Health funding. The National Institute on Aging (NIA) provides support under the following grant numbers: R01 AG005407, R01 AR35582, R01 AR35583, R01 AR35584, R01 AG005394, R01 AG027574, and R01 AG027576. TwinsUK: The study was funded by the Wellcome Trust; European Community's Seventh Framework Programme (FP7/2007‐2013). The study also receives support from the National Institute for Health Research (NIHR)‐funded BioResource, Clinical Research Facility, and Biomedical Research Centre based at Guy's and St Thomas’ NHS Foundation Trust in partnership with King's College London. SNP genotyping was performed by The Wellcome Trust Sanger Institute and National Eye Institute via NIH/CIDR. This study was also supported by the Australian National Health and Medical Research Council (project grants 1048216 and 1127156), the Sir Charles Gairdner Hospital RAC (SGW), and the iVEC/Pawsey Supercomputing Centre (project grants Pawsey0162 and Director2025 [SGW]). The salary of BHM was supported by a Raine Medical Research Foundation Priming Grant. The Umeå Fracture and Osteoporosis Study (UFO) is supported by the Swedish Research Council (K20006‐72X‐20155013), the Swedish Sports Research Council (87/06), the Swedish Society of Medicine, the Kempe‐Foundation (JCK‐1021), and by grants from the Medical Faculty of Umeå Unviersity (ALFVLL:968:22‐2005, ALFVL:‐937‐2006, ALFVLL:223:11‐2007, and ALFVLL:78151‐2009) and from the county council of Västerbotten (Spjutspetsanslag VLL:159:33‐2007). This publication is the work of the authors and does not necessarily reflect the views of any funders. None of the funders had any influence on data collection, analysis, interpretation of the results, or writing of the paper. DB will serve as the guarantor of the paper. Authors’ roles: Study conception and design: DAB, JSG, RMA, LP, DK, and JHT. Data collection: DJ, DPK, ESO, SRC, NEL, BHM, FMKW, JBR, SGW, TDC, BGF, DAL, CO, and UP‐L. Data analysis: DAB, DSE, FKK, JSG, FRS, CVG, RJB, RMA, SGW, EG, TDC, DR, and TB. Data interpretation: JSG, RMA, TDC, DR, DME, LP, DK, and JHT. Drafting manuscript: DAB and JHT. Revising manuscript content: JHT. All authors approved the final version of manuscript. DAB takes responsibility for the integrity of the data analysis.Peer reviewedPublisher PD

    Using a Non-Image-Based Medium-Throughput Assay for Screening Compounds Targeting N-myristoylation in Intracellular Leishmania Amastigotes

    Get PDF
    We have refined a medium-throughput assay to screen hit compounds for activity against N-myristoylation in intracellular amastigotes of Leishmania donovani. Using clinically-relevant stages of wild type parasites and an Alamar blue-based detection method, parasite survival following drug treatment of infected macrophages is monitored after macrophage lysis and transformation of freed amastigotes into replicative extracellular promastigotes. The latter transformation step is essential to amplify the signal for determination of parasite burden, a factor dependent on equivalent proliferation rate between samples. Validation of the assay has been achieved using the anti-leishmanial gold standard drugs, amphotericin B and miltefosine, with EC50 values correlating well with published values. This assay has been used, in parallel with enzyme activity data and direct assay on isolated extracellular amastigotes, to test lead-like and hit-like inhibitors of Leishmania Nmyristoyl transferase (NMT). These were derived both from validated in vivo inhibitors of Trypanosoma brucei NMT and a recent high-throughput screen against L. donovani NMT. Despite being a potent inhibitor of L. donovani NMT, the activity of the lead T. brucei NMT inhibitor (DDD85646) against L. donovani amastigotes is relatively poor. Encouragingly, analogues of DDD85646 show improved translation of enzyme to cellular activity. In testing the high-throughput L. donovani hits, we observed macrophage cytotoxicity with compounds from two of the four NMT-selective series identified, while all four series displayed low enzyme to cellular translation, also seen here with the T. brucei NMT inhibitors. Improvements in potency and physicochemical properties will be required to deliver attractive lead-like Leishmania NMT inhibitors

    Persistent Growth of a Human Plasma-Derived Hepatitis C Virus Genotype 1b Isolate in Cell Culture

    Get PDF
    HCV (hepatitis C virus) research, including therapeutics and vaccine development, has been hampered by the lack of suitable tissue culture models. Development of cell culture systems for the growth of the most drug-resistant HCV genotype (1b) as well as natural isolates has remained a challenge. Transfection of cultured cells with adenovirus-associated RNAI (VA RNAI), a known interferon (IFN) antagonist and inhibitor of dsRNA-mediated antiviral pathways, enhanced the growth of plasma-derived HCV genotype 1b. Furthermore, persistent viral growth was achieved after passaging through IFN-α/β-deficient VeroE6 cells for 2 years. Persistently infected cells were maintained in culture for an additional 4 years, and the virus rescued from these cells induced strong cytopathic effect (CPE). Using a CPE-based assay, we measured inhibition of viral production by anti-HCV specific inhibitors, including 2′-C-Methyl-D-Adenosine, demonstrating its utility for the evaluation of HCV antivirals. This virus constitutes a novel tool for the study of one of the most relevant strains of HCV, genotype 1b, which will now be available for HCV life cycle research and useful for the development of new therapeutics
    corecore