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Simple Summary: This study provides new insights into the changing transcriptomic and epigenomic
landscapes in chronic myeloid leukaemia (CML) patients who are receiving tyrosine kinase inhibitor
(TKI) therapy (often life-long). Alternative splicing, vital for cellular homeostasis, is dysregulated
in human cancers. Remarkably, we found abnormal splicing patterns despite molecular remission
in peripheral blood cells of chronic-phase CML patients. This phenomenon is independent of
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the TKI drug used and in striking contrast to the normalisation of gene expression and DNA
methylation patterns.

Abstract: Vast transcriptomics and epigenomics changes are characteristic of human cancers, including
leukaemia. At remission, we assume that these changes normalise so that omics-profiles resemble
those of healthy individuals. However, an in-depth transcriptomic and epigenomic analysis of
cancer remission has not been undertaken. A striking exemplar of targeted remission induction
occurs in chronic myeloid leukaemia (CML) following tyrosine kinase inhibitor (TKI) therapy. Using
RNA sequencing and whole-genome bisulfite sequencing, we profiled samples from chronic-phase
CML patients at diagnosis and remission and compared these to healthy donors. Remarkably, our
analyses revealed that abnormal splicing distinguishes remission samples from normal controls. This
phenomenon is independent of the TKI drug used and in striking contrast to the normalisation of
gene expression and DNA methylation patterns. Most remarkable are the high intron retention
(IR) levels that even exceed those observed in the diagnosis samples. Increased IR affects cell cycle
regulators at diagnosis and splicing regulators at remission. We show that aberrant splicing in
CML is associated with reduced expression of specific splicing factors, histone modifications and
reduced DNA methylation. Our results provide novel insights into the changing transcriptomic
and epigenomic landscapes of CML patients during remission. The conceptually unanticipated
observation of widespread aberrant alternative splicing after remission induction warrants further
exploration. These results have broad implications for studying CML relapse and treating minimal
residual disease.

Keywords: transcriptomic complexity; alternative splicing; intron retention; DNA methylation;
epigenetics; BCR-ABL1; histone modifications; CML; cancer

1. Introduction

Characterisation of BCR-ABL1 and its constitutive tyrosine kinase activity has facilitated
understanding of the pathogenesis and therapy of chronic myeloid leukaemia (CML) [1]. Tyrosine
kinase inhibitor (TKI) treatment results in positive responses in 60-90% of patients with chronic-phase
CML [2,3]. However, molecular mechanisms that facilitate CML maintenance and relapse remain
elusive [4]. While the molecular causes of CML are well understood, measures of therapy success
based on BCR-ABL1 expression and white blood cell count are not reliable predictors of relapse.

BCR-ABL1 overexpression perturbs the hematopoietic transcriptome [4,5]. CML progression,
maintenance, and therapy may be affected by aberrant expression and alternative splicing of
cancer-causing genes [6,7]. Alternative splicing is vital for cellular homeostasis and dysregulated
intron retention (IR) has been associated with numerous human cancers, including leukaemia [8]. IR
affects transcriptomic complexity and leads to the inclusion of premature termination codons in mature
transcripts, causing nonsense-mediated decay [9,10]. However, the role of alternative splicing in CML
remains unknown.

In addition to risk-associated genomic variants which predict poor outcome [11], there is evidence
that epigenetic regulation affects CML pathology and therapy success [12]. Epigenetic regulation via
DNA methylation and nucleosome occupancy play key roles in constitutive and alternative mRNA
splicing regulation [13-15].

To date, no systematic transcriptomics and epigenomics analyses in CML remission samples have
been conducted, neither have the effects of different therapeutic regimens on gene expression and
alternative splicing been assessed. CML presents an excellent model to study epigenetically mediated
transcriptomic alterations in myeloid cells that cause malignant transformation and the response to
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TKI treatment. New insights into this multi-layered regulatory network could provide important clues
for targeted therapies used in other malignancies as well.

Here, we report novel transcriptional and epigenetic patterns in a multi-omics analysis of CML
patient samples before and after effective front-line TKI treatment. Using this model, we found
abnormal splicing in chronic-phase CML patients, which we confirmed in a larger independent cohort.
Surprisingly, we also observed aberrant splicing patterns in complete molecular remission. This is
in contrast to the normalisation of gene expression and DNA methylation patterns driven by the
reconfiguration of blood cell composition. More specifically, we observed a marked increase in IR
and differential exon usage in CML diagnosis and remission compared to normal samples, as well as
evidence that epigenetic factors modulate splicing in CML.

2. Results

The goal of our work was to evaluate transcriptomic and epigenetic changes in CML patients
after major or complete molecular response. We retrieved sixteen peripheral blood samples from
Philadelphia-positive (Ph+) CML patients. For 10 of these patients, we also retrieved matched samples
after remission. In addition, we retrieved peripheral blood from six healthy donors (Table 1). We
subjected all samples to RNA sequencing and all matched diagnosis/remission samples as well as
control samples to whole genome bisulfite sequencing (WGBS).

Table 1. Patient and healthy donor samples used in RNA-seq and WGBS experiments. Sequencing was
performed on peripheral blood mononuclear cells (PBMCs).

Diagnosis Remission Control
Number of samples 16 11 6
Sex (F/M) 11/5 8/3 2/4
Median age years (range) 54 (21-69) 56 (23-70) 37 (30-42)
Trial
(RESIST/ENESTxtnd/PINNACLE/PERSISTEM) 1/a/4/7 1/4/4/2
Timepoint Screening (x12)/Day 1 6-35 months
First-line TKI (imatinib/nilotinib) 8/8
RNA-seq and WGBS (RNA-seq only) 10 (+6) 10 (+1) 6

2.1. Heterogeneous CML Transcriptomes Converge at Remission

RNA sequencing reads mapping to the BCR-ABLI locus were found in diagnosis samples only
(Figure S2A), confirming the results of clinical qRT-PCR-based BCR-ABL1 quantification (Data S1). Apart
from the characteristic BCR-ABL1 fusion, we identified other recurring intra- and inter-chromosomal
fusions (Figure S2A,B, Data S2) that occur in diagnosis, remission or control samples. A novel fusion
transcript between the myeloid cell-specific transmembrane glycoprotein CLEC12A (12p13.31) and the
microRNA miR-223 host gene MIR223HG (Xq12) was expressed at higher levels (fold change - FC =
7.16) at diagnosis compared to remission (Figure S2C-E, Table S2).

For most patients, we observed a global reduction of gene expression in remission compared
to diagnosis (Figure S3A). This can be attributed to the reconfigured blood cell composition, which
resembles lymphoid cell-enriched normal controls (Figure 1A,B). A significant downregulation was
observed in genes encoding kinases other than BCR-ABL1 and kinase-like proteins such as CENPE,
CDK1, AURKB, MELK, and BUBI1B (Figure S4). Reduced expression at remission, similar to levels
observed in control samples, also affected cyclins such as CCNA1, CCNB2 and other cell cycle regulators,
as well as genes related to DNA replication and repair (Figure 1A, Figure S5A). In this context, no
consistent differences were noted between patients treated with imatinib or nilotinib (Figure S1).
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Figure 1. Molecular remission is reflected in transcriptomic profiles. (A) The Top 200 differentially
expressed genes with lowest adjusted p-value in likelihood ratio test. (B) Predicted cell type
enrichment in peripheral blood samples (diagnosis/red: D1-27; remission/green: R1-10; control/blue:
C1-6). The stacked bar graph shows normalized cell type enrichment scores for patient and
control transcriptomes based on bulk RNA sequencing data. Predictions were made with the
xCell R package (github.com/dviraran/xCell) [16]. HSC—hematopoietic stem cell, CLP—common
lymphoid progenitor, CMP—common myeloid progenitor, GMP—granulocyte/macrophage progenitor,
MEP—megakaryocyte/erythroid progenitor, MK—megakaryocyte, NK—natural killer, DC—dendritic
cell. (C) Principal component analysis separates diagnosis samples from the common features of
remission samples and healthy controls.

A set of genes (n = 81), that are functionally associated with oxygen and bicarbonate transport
(GO:0015671; GO:0015701) as well as the haemoglobin’s chaperone pathway (Biocarta), was significantly
differentially expressed in all three comparisons (diagnosis vs. control, remission vs. control, and
diagnosis vs. remission; Figure S5B). Overall, we observed that patients diagnosed with CML have
highly heterogeneous transcriptomes. In contrast, remission transcriptomes are more alike (Figure 1C)
and exhibit fewer differences in comparison to healthy control samples (Figure S3B).

2.2. DNA Methylation Profiles Return to Normal at Remission

To characterise putative epigenetic causes for differential gene expression in CML patients prior
to and after successful TKI treatment, all matched diagnosis/remission samples as well as all control
samples were subjected to WGBS. The analysis revealed almost 25,000 differentially methylated regions
(DMRs) in the genomes of diagnosis and remission samples (Figure 2A, left). Vast DNA methylome
differences were found in every matched patient sample (Figure S6) and across all chromosomes
(Figure 2B). In contrast, only 710 DMRs were observed between remission and control samples
(Figure 2A, right). Indeed, multidimensional scaling showed that DNA methylation profiles of
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Figure 2. DNA methylation in chronic myeloid leukaemia (CML). (A) Frequency of differentially

methylated regions (DMRs) based on delta values between pooled diagnosis and remission samples

(left) as well as remission and control samples (right). (B) Circos plot illustrating genome-wide

differences in the frequency of DMRs (central ring with blue scatter plot: diagnosis vs. remission, inner

ring with red scatterplot: remission vs. control). This plot was generated using the Circos software [17].

(C) Scatterplot illustrating the number of significantly differentially methylated CpG sites per DMR

and associated delta values (red points, diagnosis vs. remission; blue points, remission vs. control). (D)

Enriched Gene Ontology (GO) terms associated with DMRs (remission vs. diagnosis) in gene promoter

regions (red dashed line marks p = 0.05). (E) Distribution and density of DMRs across gene features.

RC—remission vs. control, DR—diagnosis vs. remission, DC—diagnosis vs. control.

DMRs between diagnosis and remission samples contain, on average, a larger number of
differentially methylated CpG sites (Figure 2C). This is consistent with previous reports that suggest
an increase in CpG site methylation during CML progression that affects tumour-suppressor genes
and regulators of cell proliferation [12]. DMRs are associated with processes of the innate immune
response, apoptosis, cell differentiation and cell migration (Figure 2D).

Our results show that DNA methylation returns to normal levels after successful TKI treatment.
Most DMRs can be found in intronic regions, however, the highest density of DMRs was observed
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in 5 untranslated regions (Figure 2E), suggesting a key role for differential DNA methylation in
orchestrating CML gene expression regulation.

2.3. Aberrant Alternative Splicing Distinguishes Remission Samples from Healthy Controls

To assess whether major or complete molecular remission also affects gene isoform expression,
we conducted a systematic analysis of the five major forms of alternative splicing (Figure S8A).In a
pairwise comparison of alternative splicing event frequencies between matched diagnosis/remission
samples, no consistent trend towards an increase or decrease in either of the two conditions was found
(Figure S8B). This suggests that in contrast to gene expression profiles, splicing patterns remain atypical
after major or complete molecular remission.

Alternative splicing analysis of the Cancer Genome Atlas (TCGA) cohort by Dvinge et al [8].
revealed that the frequency of IR events is consistently higher in acute myeloid leukaemia compared
to normal controls [8]. Although mean IR frequencies are also higher in CML samples (diagnosis,
u = 3382; remission, u = 3484) compared to healthy donors (1 = 2822), high inter-donor variability
led to differences in IR frequencies that did not reach significance (Figure S8C). However, when we
subsampled the RNA sequencing data to facilitate a uniform sequencing depth for comparison [18],
we observed a clear separation with significantly increased IR frequencies at diagnosis and remission
compared to controls (Figure 59). Moreover, we found that the IR ratios are consistently higher in
diagnosis and remission samples compared to healthy controls (Figure 3A). Differences between
diagnosis and remission samples were less pronounced (Figure 3A and Figure 510). While IR profiles
are unsuitable for patient stratification (Figure S11), differentially retained introns between diagnosis
and remission samples are, similar to differentially expressed genes, associated with cell cycle regulators
as well as genes related to DNA replication and repair (Figure S12). However, in remission, IR primarily
affects genes involved in splicing processes (Figure S12), suggesting that aberrant splicing persists in
remission due to auto-regulatory processes. Overall, IR profiles are highly dynamic in CML, which
becomes apparent when considering the large overlap of differentially retained introns (n = 419) in all
three comparisons (Figure 3B). We confirmed these results with an independent dataset of 59 CML
patients from Branford et al. [11], which includes samples from various stages of disease progression,
and from 4 healthy controls (Figure 3C). The number of IR events in this cohort was highly variable.
While there are on average more IR events in chronic phase compared to healthy controls, the number
drops significantly at blast crisis (Figure 3C, right).

Examining differential exon usage in our samples, we observed a similar trend, although not
as marked as observed in differential IR, i.e., both diagnosis and remission samples exhibit a larger
number of differentially used exons (DUEs) compared to normal controls. Most of these DUEs are
upregulated (diagnosis, 78%; remission, 81%; Figure 3D). A large fraction of the DUEs at diagnosis
(72%) remain differentially expressed at remission as well. Some genes of these mutual DUEs are
associated with DNA repair mechanisms (top-enriched GO term; Figure 3E). Only 26 exons in total are
differentially used in diagnosis vs. remission samples (Figure 3D).
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Figure 3. Global alternative splicing patterns are similar despite major molecular remission. (A)
Scatterplots illustrating differential IR events between pooled diagnosis/remission/control samples
binned into hexagons to avoid overplotting (yellow: adj.-p < 0.05; red: adj.-p < 0.01). (B) Venn diagram
showing intersections of mutually differentially retained introns. (C) Dynamics of IR across CML
phases. CML patient data from Branford et al [11]. was analysed for the occurrence of IR events. Left:
Sample sizes for Control, CP: Chronic Phase, AP: Accelerated Phase, MBC: Myeloid Blast Crisis and
LBC: Lymphoid Blast Crisis samples. Middle: Sample numbers matched from different phases. Right:
Boxplot of IR frequencies in samples from different CML phases. Mann-Whitney U test; ** (p < 0.01),
ns (p > 0.05). (D) Differential exon usage in pooled diagnosis vs. control (left), diagnosis vs. remission
(middle) and remission vs. control samples. Numbers following the red arrows indicate how many
upregulated DUEs in the first of the two conditions compared. Numbers following the green arrows
indicate how many downregulated DUE:s in the first of the two conditions compared. (E) Intersection
of differentially used exons in diagnosis and remission samples compared to controls (the top-enriched
GO term and associated genes are listed in the middle).

Modulation of IR Levels Supports Lineage-Specific Gene Expression in CML

IRis accepted as a mechanism of post-transcriptional gene regulation triggering nonsense-mediated
decay due to the presence of premature termination codons within the retained introns [19,20]. We
analysed the relationship between IR and gene expression changes, but overall, the two variables
did not significantly correlate (Figure 4A). However, many of the genes, whose expression does
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anti-correlate with the retention of their introns, are involved in cell cycle regulation (e.g., CCL3, CKS2
and SPAG)5) and DNA replication/repair (e.g., FANCI/FANCD?2 and PCNA) (Figure 4A).

We selected three differentially retained introns of cell cycle regulator genes for experimental
validation (CKS2 intron 1, CCL3 intron 1 and SERPINBI intron 2). Based on the RNA sequencing data
analysis, all three introns have an increased expression and higher IR ratio at diagnosis compared to
healthy controls (Figure 4A). We confirmed these observations via qRT-PCR (Figure 4B). The IR ratios
of CKS2 intron 1 and SERPINBI intron 2 increase further at remission, resulting in a reduction of host
gene expression, while the IR ratio of CCL3 intron 1 is reduced at remission and associated with an
increase in gene expression (Figure 4A,B).

Interestingly, some instances of inverse relationships between IR and gene expression affect
lineage-specific genes (Figure 4C). For example, the chemokine Interleukin-8 (CXCLS8), which is
predominantly expressed in neutrophils, is upregulated at diagnosis. This could be attributed to
the increased myeloid progenitor cell abundance (Figure 1B), but also to the reduced IR levels in
CXCL8 mRNA (Figure 4A). In control samples, the IR levels increase from 12.9% to 26.7% in CXCLS8
(intron 2), while gene expression is reduced 4-fold. CXCL8 promotes CML cell proliferation [21] and
previous reports suggest that CXCL8 expression is modulated both by BCR-ABL1 expression (causing
an increase) and TKI treatment (causing inhibition of CXCLS) [22].

In contrast, PRKCH is downregulated at CML diagnosis along with increased IR levels (Figure 4A).
PRKCH is a serine-threonine kinase that regulates hematopoietic stem cell function and is specifically
expressed in lymphoid cells. Notably, high PRKCH expression has been associated with poor prognosis
in acute myeloid leukaemia [23].

These observations suggest that lineage-specific expression of drivers of cell proliferation and
hematopoietic cell differentiation can be mediated through IR level changes in CML.
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Figure 4. Differentially retained introns inhibit the expression of cell cycle regulators following major
molecular remission. (A) Scatterplots illustrating the relationship between differentially retained
introns (AIR) and differential gene expression (log2 expression fold change). Introns (JAIR| > 0.1) with
inverse relationship to host gene expression (|log(FC)| > 1) are highlighted in red. (B) Coverage plots
of selected differential IR events (left) and qRT-PCR validation of differential IR between diagnosis
and control (right). qRT-PCR validation was performed in triplicates on independent diagnosis
samples and results were normalised to B2M expression. D—diagnosis, C—control. (C) Blood
cell type expression of genes with inverse IR/gene expression relationships (diagnosis vs. control;
blue—myeloid, magenta—lymphoid cells). The data were retrieved from the Human Protein Atlas
(v19.3; http://www.proteinatlas.org) [24].

2.5. Multiple Regulatory Mechanisms Modulate Intron Retention in CML

Characteristics of the retained introns in our CML cohort are in accordance with previously
described attributes, such as their relatively short length (Figure S13) and higher guanine-cytosine (GC)
content (Figure S14). While these are intrinsic features of IR, we sought potential trans-regulators and
found that the gene that most strongly correlates (p = 0.64) with IR frequencies is MED21 (Mediator
Complex Subunit 21; Figure 5A). MED21 regulates gene transcription by interacting with RNA
polymerase II [25]. RNA polymerase II elongation rates influence splice site recognition and IR [15].
Interestingly, the expression of ZNF160, encoding a Zinc Finger Protein and repressor of transcription,
strongly anti-correlates (p = —0.62) with IR frequencies (Figure 5A).
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We also examined expression changes in components of the super-elongation complex (SEC), the
negative transcription elongation factor (NELF), the 5,6-dichloro-1-3-d-ribofuranosylbenzimidazole
(DRB) sensitivity-inducing factor (DSIF), and others. A persistent upregulation, at diagnosis and
remission, was observed for the eleven-nineteen Lys-rich leukaemia (ELL) family member ELL2 (Figure
515), which is a factor involved in suppressing transient pausing of Pol II [26]. The negative elongation
factors NELFB and NELFCD are consistently downregulated at diagnosis and remission (Figure S15).
A coordinated interplay between p-TEFb, NELF and DSIF is required for the release of Pol II from
pausing sites to start productive elongation, which might be impacted by reduced NELF levels, leading
to aberrant splicing [26].
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Figure 5. Regulation of IR in CML. (A) Two genes that most strongly correlate/anti-correlate with IR
frequencies (Spearman correlation). (B) CpG methylation around intron splice sites (+ 200 bp) and in
the centre (200 bp) of retained- (red) and non-retained introns (blue) in CML diagnosis samples. General
linear hypothesis test; p < 2.2 x 10716 (p-adj. < x 1 x 10710). (C) The effect of RNA binding proteins on
IR frequency. RNA-seq data of small hairpin RNA (shRNA)-mediated knockdown of indicated RNA
binding proteins in K562 cells was retrieved from the ENCODE project (encodeproject.org). WT—wild
type. (D) Expression of RNA binding proteins with enriched binding motifs near frequently retained
introns [27]. TPM - transcripts per million mapped reads; C—control; D—diagnosis; R—remission;
NS.—non-significant, ** p < 0.01, *** p < 0.001. (E) Histone modifications with increased numbers of
peaks near splice sites of retained introns (red: retained; blue: non-retained introns). The analysis was
repeated for each expression quartile to exclude the possibility that increased histone modifications are
associated with gene expression. (F) Possible mechanisms of IR regulation in CML discussed in the text.

We have previously shown that DNA methylation regulates IR in myeloid cells [15]. To confirm
this mode of regulation in our CML cohort, we compared CpG methylation around the splice sites
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(200 bp) and in the centre (200 bp) of retained and non-retained introns. We confirmed decreased
DNA methylation levels near the 3’ splice junction and within the body of retained introns (Figure 5B).
Similar patterns were observed in remission and control samples, suggesting that this mode of IR
regulation is also present in lymphoid cells (Figure 516).

To further investigate the role of epigenetics in the regulation of IR in CML, we retrieved RNA-seq
and chromatin immunoprecipitation sequencing (ChlP)-seq data of the K562 CML cell line from
ENCODE (encodeproject.org). We analysed transcriptomics data of RNA binding protein knockdown
experiments and observed significantly increased IR occurrences with the most drastic IR increase
(~5 fold) following Poly(RC) Binding Protein 2 (PCBP2) knockdown (Figure 5C). All genes with
enriched binding motifs near frequently retained introns [27] were downregulated at CML diagnosis,
except for SRSF5 (Figure S17). Three of these RNA-binding proteins, including PCBP2, remained
downregulated in remission (Figure 5D).

To identify additional potential explanations for the dysregulation of IR in CML, we analysed
histone modifications in K562 cells. While higher levels of H3K36 trimethylation have previously
been associated with IR [28,29], we found only marginal differences in H3K36me3 levels in retained
versus non-retained introns. Increasing numbers of H3K36me3 peaks around introns were observed in
more highly expressed genes (Figure 518). However, we found that monomethylation and acetylation
of histone H3 lysines 4 and 9 respectively (H3K4mel and H3K%ac), were significantly enriched near
splice sites of retained introns and within their intron bodies in contrast to non-retained introns
(Figure 5E). While a significant enrichment of H3K9ac has been found to co-occur at many gene
regulatory elements in mouse embryonic stem cells [30], here, we established a strong association of
H3K9ac with IR. Elevated levels of H3K4 methylation in association with IR have been previously
reported by Zhou et al. [28].

In summary, our analysis of CML patient transcriptomes revealed aberrant alternative splicing
both at diagnosis and remission. Elevated IR ratios in CML can be explained by multiple regulatory
mechanisms including the regulation of RNA Pol II elongation, demethylation of CpG sites, histone
modifications and RNA binding proteins (Figure 5F). The TKI treatment itself seems to have no effect
on IR (Figure S19).

3. Discussion

In this study, we analysed epigenomics and transcriptomics data from patients diagnosed with
chronic-phase Ph+ CML and matched remission samples after effective treatment with TKIs. Thereby,
we generated novel insights into the molecular responses to TKI therapy beyond the known reduction
in BCR-ABLI expression.

We have identified recurring fusion transcripts in patient samples, including an uncharacterised
fusion between the cell surface marker C-type lectin domain family 12 member A (CLEC12A4; 12p13.31)
and the MIR223 host gene (Xq12). The expression of CLEC12A::MIR223HG is low in remission and
control samples but significantly increased at diagnosis. Therefore, it warrants further investigation to
determine its relevance in CML. Other non-specific intra-chromosomal fusions include EEF1DP3-FRY,
EIF4E3-FOXP1, KANSL1-ARL17B and the mitochondrial fusion ND6-TE (Supplementary Figure S2A).
An increasing number of mitochondrial mutations and fusions have been described as a consequence
of increased reactive oxygen species during ageing [31], however, the age range (21-70 years) of
ND6-TE-positive patients in our cohort does not support an age-related occurrence of this fusion.

Gene expression profiles of our CML remission samples are more similar to those of healthy
donors, likely due to the change in cell composition and the loss of BCR-ABLI clones. Consistent
with previous studies, we found cell cycle regulators among the most aberrantly expressed genes
in the diagnosis samples. For example, cyclins Al and B2 (CCNA1, CCNB2) were among the most
differentially expressed genes, with overexpression at diagnosis and low expression at remission
(comparable to expression levels observed in healthy controls). While cyclin D2 (CCND2) has previously
been characterised as a BCR-ABL-dependent mediator of cell proliferation in hematopoietic cells [32],
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marginal changes in CCND?2 (FC = 0.87, p = 0.04) expression suggest that other cyclins such as CCNA1
(FC =123, p = 5.4 x 107°%) and CCNB2 (FC = 7.2, p = 9.2 x 107°) were among the more potent
regulators of cell proliferation in this cohort of CML patients.

The most surprising result of our study was that, in contrast to gene expression, alternative
splicing patterns did not return to normal in CML remission samples. At diagnosis, the peripheral
blood contains a large proportion of myeloid progenitor cells and stem cells, which are known to
express high numbers of intron-retaining transcripts compared to other blood cell types [19,20,27,33].
In remission, however, where myeloid progenitor cells are diminished, aberrant splicing seems to
affect the lymphoid-enriched cell populations. It is important to note that, similar to myeloid lineages,
lymphoid cells undergo dynamic IR programs during differentiation and upon activation [34,35]. For
example, IR transcript expression is highest in naive or resting B-cells and decreases when B-cells
undergo affinity maturation [35]. Likewise, IR is prevalent in resting CD4+ T-cells and dramatically
reduced upon activation [34]. Interestingly, it has been shown that imatinib inhibits T-cell proliferation
and activation [36,37] and that TKIs impair B-cell immune responses in CML [38]. In this context,
immunosuppressive effects have been observed in CML patients in remission, possibly due to TKI
off-target effects [39—41].

Shen et al [42]. have shown that alternative splicing events can be used to construct predictors
for patient survival, that outperform gene expression-based predictors in multiple cancers [42].
Splicing-based prognostic markers have already been found for several cancer types [42,43]. Therefore,
a splicing-based predictor for TKI cessation success is not just desirable but an achievable prospect,
once clinical data of trial TKI cessation together with remission transcriptomics data become available.

Our results were consistent across patients and different specific TKI treatments. It is known that
the cell composition of the peripheral blood changes in CML—with myeloid progenitor cell-enrichment
at diagnosis and mature lymphoid cell-enrichment at remission. The latter is very similar to the cell
composition observed in the peripheral blood of healthy individuals (Figure S5). Therefore, epigenomic
and transcriptomic differences between diagnosis and remission may be expected. However, the
persistent alternative splicing perturbations in remission that do not resemble patterns observed in
healthy controls are remarkable.

We found new evidence for epigenetic regulators of alternative splicing, such as reduced DNA
methylation and increased H3K4mel and H3K9ac marks around retained introns. We have previously
shown that DNA methylation can regulate IR in myeloid cells and during terminal granulopoiesis [15,44].
In CML, reduced DNA methylation in the intron body and 3 splice site is associated with IR (Figure 5B).
A role for the promoter and enhancer mark H3K4 mono-methylation in gene repression has been
identified previously [45], however, H3K4mel-dependent alternative splicing has not been described
before. H3K4mel and H3K%ac are present at the promoters of both intron-retaining and non-retaining
genes but they can be predominantly found near splice sites and within bodies of retained introns
in contrast to non-retained introns (Figure 5E). While both histone marks seem indicative of active
transcription (Figure 5E), by regulating Pol II recruitment and elongation rates [45,46] around splice
sites, they could promote IR in CML. IR regulation via H3.3K36me3-specific readers, such as previously
shown in HeLa cells [29], seems less relevant in CML patients.

In summary;, it seems unlikely that the observed patterns are caused by persisting leukemic clones.
Most patients in this cohort were in complete molecular remission, and some in major molecular
remission. Aberrant splicing, however, was widespread at remission in all patients. While the effect of
persisting leukemic clones on aberrant splicing cannot be entirely ruled out, our evidence suggests
that this is unlikely to be the case. Multiple recent studies have shown that aberrant IR in cancer
can be triggered by epigenetic changes, splicing factor dysregulation and changes in transcription
elongation [47]. We confirmed these observations in our analysis of CML patient samples and K562
cells. While we could not find evidence for direct TKI-induced aberrant splicing, the observed patterns
of high IR in remission samples could also be an indication of TKI-induced immunosuppression
reflected by an enrichment in naive and resting B- and T-cell populations.
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While our study provides novel insights into the changing transcriptomic and epigenomic
landscapes of CML patients during remission, the implications of our results for CML relapse have yet
to be elucidated.

4. Materials and Methods

4.1. Patient Samples

We retrieved nine diagnostic specimens (total leukocytes from peripheral blood collected
in ethylenediaminetetraacetic acid (EDTA) from patients enrolled in the RESIST (1 imatinib;
ACTRN12610000055000), ENESTxtnd (4 nilotinib, NCT01254188) and PINNACLE (4 nilotinib +
pegylated interferon, ACTRN12612000851864) trials, with matched remission specimens (major
or complete molecular response at 12 or 24 months). In addition, nine CML patient samples (7
diagnostic and 2 matched remission) from the French Persistem study were obtained. All patients
were diagnostically tested for the presence of the BCR/ABL1 gene fusion. Most patients also had a bone
marrow cytogenetic analysis at diagnosis, confirming only the reciprocal chromosomal translocation
t(9;22) (q34;q11) characteristic for CML.

For the validation of IR events and fusion transcripts, we retrieved further matched
diagnosis/remission samples from the TIDELII trial (20 imatinib, ACTRN12607000325404). RNA
was isolated from mononuclear cells (from peripheral blood collected in lithium heparin) which
had been cryopreserved and subsequently thawed into TRIzol (Invitrogen, Carlsbad, CA, USA). All
studies were approved by the institutional review boards (HREC protocol No: 131015 (on 31 Oct 2013),
081211(on 15 Dec 2008), and 101010 (on 18 Nov 2010), —Royal Adelaide Hospital; Int. 100912—Inserm
internal ethical committee, 2012) and are in accordance with the Declaration of Helsinki. Patients
provided written informed consent.

4.2. RNA Isolation and mRNA-seq

Total RNA was isolated from diagnosis, remission and control samples (PBMCs) using Trizol
according to the manufacturer’s protocol. For mRNA sequencing, poly-A-enriched mRNA libraries
were prepared from 1 pg of total RNA using the TruSeq Stranded RNA sample prep kit (Illumina, San
Diego, CA, USA), prior to paired-end sequencing using the HiSeq 2500 platform. RNA sequencing
was performed in triplicates for each sample.

4.3. mRNA Sequencing Data Analysis

Paired-end RNA-sequencing reads (125 nt) were trimmed and mapped to the human reference
genome hg38 using STAR v2.7 [48]. Quality control of raw and mapped sequencing reads was
performed using FASTQC v0.11.5 (github.com/s-andrews/FastQC), RSeQC v2.6.4 [49] and multiqc
v1.2 [50]. Putative confounders and batch effects were excluded using principal components analyses
(Figure S1). STAR-FUSION v1.4.0 [51] was used for the identification of fusion genes and Fusion
Inspector (Fusionlnspector.github.io) for in silico validation of the predicted gene fusions. Gene
expression levels specified as transcripts per million (TPM) were determined using Salmon 0.14.1 [52].

General statistics on alternative splicing events were determined using rtMATS v3.2.4 [53]. We used
our IRFinder algorithm (v1.2.0) for the detection of IR events in introns extracted from an Ensembl gtf
file (regions between two adjacent exons) [27]. IRFinder estimates the abundance of IR by computing
the ratio between gene transcripts retaining an intron and the sum of all transcripts of the respective
gene (more information is provided in File S1).

Differentially used exons were determined using the R Bioconductor package DEXSeq [54].
Differential exon usage (DEU) = changes in the relative usage of exons:

transcriptsyith_exon/(transcriptsyith exon + transcriptsyithout exon) 1)
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4.4. IR Validation

Extracted RNA (2 ug) was treated with DNAse Turbo (Invitrogen, Carlsbad, CA, USA) and reverse
transcribed into cDNA using oligo(dT) priming and Superscript III (ThermoFisher, Waltham, MA, USA),
according to the protocol supplied by the manufacturer. For each sample, a corresponding control
without reverse transcriptase was used to assess DNA contamination. For qPCR, cDNA templates
were amplified, and the C; values were quantified with SYBR Green Master Mix (ThermoFisher).
Beta-2 microglobulin (B2M) was used as the normalisation control for cDNA input. Experiments were
performed using the CFX96 Real-Time PCR System (BIORAD, Hercules, CA, USA). The list of primers
is provided in Table S1.

4.5. Whole Genome Bisulfite Sequencing (WGBS)

WGBS libraries were prepared following Illumina’s “Whole-Genome Bisulfite Sequencing for
Methylation Analysis” protocol. Briefly, 1 ug of genomic DNA was spiked with 0.5% unmethylated
lambda DNA and sonicated to generate fragments of size between 150 to 300 bp. Library preparation
was performed using Illumina’s Paired-end DNA Sample Prep Kit (discontinued, Illumina, San Diego,
CA, USA) according to the manufacturer’s protocol. The size-selected libraries were then subjected to
bisulfite conversion as previously described [55]. Adaptor-ligated bisulfite-treated DNA was enriched
by 10 cycles of PCR amplification using the PfuTurbo Cx Hotstart DNA Polymerase (Stratagene, La
Jolla, CA, USA). Qualitative and quantitative checks of the libraries were performed using Agilent’s
High sensitivity DNA kit (Agilent, Santa Clara, CA, USA) and KAPA Library quantification kit (KAPA
Biosystems, Wilmington, MA, USA). Three lanes of paired-end 100 bp sequencing was performed for
each of the libraries on the Illumina HiSeq2500 platform using the TruSeq v3 cluster kits and SBS kits
(lumina) to achieve coverage ranging between 25 x and 30 x.

4.6. WGBS Data Analysis

Reads were processed and aligned to the human (hg38) reference genome using Meth10X
(github.com/luuloi/Meth10X) [56]. In short, the Meth10X pipeline takes raw reads in fastq format
and trims the adaptors, which are then aligned to the human reference genome using bwa-meth
(github.com/brentp/bwa-meth). The generated bam files were marked with duplication and merged
if necessary. Estimation of the duplication rate, coverage bias (genomic features) and methylation
bias in reads was carried out to provide quality control. All the metrics, such as percentage of
unmapped/mapped read metrics, mapping quality distribution, GC content distribution, insert size
distribution and coverage distribution, were generated by Qualimap 2 [57] for further evaluation of
the alignment. Finally, a count table and bigwig files of methylated and coverage at each CpG site in
the genome was constructed for all samples. Differentially methylated regions (DMRs) were identified
using MethPipe [58] with a count table of all samples as input. The analysis of differential methylation
and IR is described in the File S1.

4.7. ChIP-seq Data Analysis

ChIP-seq data of histone modifications in K562 cells was retrieved from ENCODE
(encodeproject.org) and further processed as described in the File S1.

4.8. Statistical Analyses

All statistical analyses were performed in R v.3.6.2 (www.r-project.org). The Wald testimplemented
in the R package DESeq2 [59] was used for the identification of statistically significant differential
alternative splicing events and differential gene expression analysis. p-values were adjusted for the
false discovery rate using the Benjamini-Hochberg procedure. Functional enrichment analysis of
differentially expressed genes and genes with differentially retained introns was performed using
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DAVID 6.7 [60] with the human genome and the set of expressed genes respectively, used as
a background.

4.9. Data Availability

The raw sequencing data (fastq) have been deposited at Gene Expression Omnibus (GEO,
https://www.ncbinlm.nih.gov/geo/) under accession GSE144119.

5. Conclusions

Our study has provided new insights into the epigenomic and transcriptomic landscapes of CML
patients at diagnosis and remission. We have shown that, despite a changing cell composition at major
or complete molecular remission, alternative splicing remains aberrantly regulated, with high IR levels
affecting multiple cell cycle regulators. Further research is required to test whether sustained RNA
processing alterations in CML remission facilitate relapse following TKI cessation. The new knowledge
about epigenetic links to alternative splicing in CML could facilitate the development of epigenetic
therapeutic adjuvants to increase the likelihood of successful TKI cessation. Modulation of spliceosome
function has recently been proposed as a new therapeutic avenue in leukaemia [61], which is an idea
reinforced by our results.
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remission, Figure S4: Kinome changes in CML patients from diagnosis to remission, Figure S5: Enriched GO
terms and KEGG pathways, Figure S6: Circos plots of DMRs in all of the ten matched patient samples, Figure S7:
Multidimensional scaling (MDS) plots of DNA methylation data, Figure S8: Alternative splicing analysis, Figure
S9: IR frequencies in subsampled sequencing data, Figure S10: Differential IR of paired diagnosis and remission
samples of individual patients, Figure S11: Clustering of intron retention profiles, Figure S12: GO analysis of
differential intron-retaining genes, Figure S13: Characteristics of retained introns in CML, Figure S14: Intronic
GC content, Figure S15: Expression of transcription elongation factors, Figure S16: CpG methylation around
intron splice sites, Figure S17: Expression of RNA binding proteins with enriched binding motifs near frequently
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