92 research outputs found

    Lessons from prospective longitudinal follow-up of a French APECED cohort

    Get PDF
    Background Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome is a rare disease caused by biallelic mutations of the AIRE gene, usually presenting with the triad hypoparathyroidism-adrenal failure-chronic mucocutaneous candidiasis (CMC) and nonendocrine manifestations. The aim of this study was to determine the molecular profile of the AIRE gene, the prevalence of rare manifestations, and to characterize immunological disturbances in a French cohort. Patients and Methods A national, multicenter prospective observational study to collect genetic, clinical, biological, and immunological data (NCT03751683). Results Twenty-five patients (23 families) were enrolled. Eleven distinct AIRE variants were identified, 2 of which were not previously reported: an intronic variant, c.653-70G > A, and a c.1066del (p.Arg356GlyfsX22) variant (exon 9). The most common was the Finnish variant c.769C > T (16 alleles), followed by the variant c.967_979del13 (15 alleles), which seemed associated with a less severe phenotype. Seventeen out of 25 patients were homozygote. The median number of clinical manifestations was 7; 19/25 patients presented with the hypoparathyroidism-adrenal failure-CMC triad, 8/13 showed pulmonary involvement, 20/25 had ectodermal dystrophy, 8/25 had malabsorption, and 6/23 had asplenia. Fifteen out of 19 patients had natural killer cell lymphopenia with an increase in CD4+ and CD8+ T lymphocytes and an age-dependent alteration of B lymphocyte homeostasis compared with matched controls (P < .001), related to the severity of the disease. All tested sera (n = 18) were positive for anti-interferon-α, 15/18 for anti-IL-22 antibodies, and 13/18 for anti-IL-17F antibodies, without clear phenotypic correlation other than with CMC. Conclusion This first prospective cohort showed a high AIRE genotype variability, with 2 new gene variants. The prevalence of potentially life-threatening nonendocrine manifestations was higher with systematic screening. These manifestations could, along with age-dependent B-cell lymphopenia, contribute to disease severity. Systematic screening for all the manifestations of the syndrome would allow earlier diagnosis, supporting vaccination and targeted therapeutic approaches

    Alpha thalassaemia-mental retardation, X linked

    Get PDF
    X-linked alpha thalassaemia mental retardation (ATR-X) syndrome in males is associated with profound developmental delay, facial dysmorphism, genital abnormalities and alpha thalassaemia. Female carriers are usually physically and intellectually normal. So far, 168 patients have been reported. Language is usually very limited. Seizures occur in about one third of the cases. While many patients are affectionate with their caregivers, some exhibit autistic-like behaviour. Patients present with facial hypotonia and a characteristic mouth. Genital abnormalities are observed in 80% of children and range from undescended testes to ambiguous genitalia. Alpha-thalassaemia is not always present. This syndrome is X-linked recessive and results from mutations in the ATRX gene. This gene encodes the widely expressed ATRX protein. ATRX mutations cause diverse changes in the pattern of DNA methylation at heterochromatic loci but it is not yet known whether this is responsible for the clinical phenotype. The diagnosis can be established by detection of alpha thalassaemia, identification of ATRX gene mutations, ATRX protein studies and X-inactivation studies. Genetic counselling can be offered to families. Management is multidisciplinary: young children must be carefully monitored for gastro-oesophageal reflux as it may cause death. A number of individuals with ATR-X are fit and well in their 30s and 40s

    Disentangling molecular and clinical stratification patterns in beta-galactosidase deficiency

    Get PDF
    INTRODUCTION: This study aims to define the phenotypic and molecular spectrum of the two clinical forms of β-galactosidase (β-GAL) deficiency, GM1-gangliosidosis and mucopolysaccharidosis IVB (Morquio disease type B, MPSIVB). METHODS: Clinical and genetic data of 52 probands, 47 patients with GM1-gangliosidosis and 5 patients with MPSIVB were analysed. RESULTS: The clinical presentations in patients with GM1-gangliosidosis are consistent with a phenotypic continuum ranging from a severe antenatal form with hydrops fetalis to an adult form with an extrapyramidal syndrome. Molecular studies evidenced 47 variants located throughout the sequence of the GLB1 gene, in all exons except 7, 11 and 12. Eighteen novel variants (15 substitutions and 3 deletions) were identified. Several variants were linked specifically to early-onset GM1-gangliosidosis, late-onset GM1-gangliosidosis or MPSIVB phenotypes. This integrative molecular and clinical stratification suggests a variant-driven patient assignment to a given clinical and severity group. CONCLUSION: This study reports one of the largest series of b-GAL deficiency with an integrative patient stratification combining molecular and clinical features. This work contributes to expand the community knowledge regarding the molecular and clinical landscapes of b-GAL deficiency for a better patient management

    Autistic Disorder in Patients with Williams-Beuren Syndrome: A Reconsideration of the Williams-Beuren Syndrome Phenotype

    Get PDF
    International audienceBackground: Williams-Beuren syndrome (WBS), a rare developmental disorder caused by deletion of contiguous genes at 7q11.23, has been characterized by strengths in socialization (overfriendliness) and communication (excessive talkativeness). WBS has been often considered as the polar opposite behavioral phenotype to autism. Our objective was to better understand the range of phenotypic expression in WBS and the relationship between WBS and autistic disorder. Methodology: The study was conducted on 9 French individuals aged from 4 to 37 years old with autistic disorder associated with WBS. Behavioral assessments were performed using Autism Diagnostic Interview-Revised (ADI-R) and Autism Diagnostic Observation Schedule (ADOS) scales. Molecular characterization of the WBS critical region was performed by FISH. Findings: FISH analysis indicated that all 9 patients displayed the common WBS deletion. All 9 patients met ADI-R and ADOS diagnostic criteria for autism, displaying stereotypies and severe impairments in social interaction and communication (including the absence of expressive language). Additionally, patients showed improvement in social communication over time. Conclusions: The results indicate that comorbid autism and WBS is more frequent than expected and suggest that the common WBS deletion can result in a continuum of social communication impairment, ranging from excessive talkativeness and overfriendliness to absence of verbal language and poor social relationships. Appreciation of the possible co-occurrence of WBS and autism challenges the common view that WBS represents the opposite behavioral phenotype of autism, and might lead to improved recognition of WBS in individuals diagnosed with autism

    Novel SPG11 mutations in Asian kindreds and disruption of spatacsin function in the zebrafish

    Get PDF
    Autosomal recessive hereditary spastic paraplegia with thin corpus callosum (HSP-TCC) maps to the SPG11 locus in the majority of cases. Mutations in the KIAA1840 gene, encoding spatacsin, have been shown to underlie SPG11-linked HSP-TCC. The aim of this study was to perform candidate gene analysis in HSP-TCC subjects from Asian families and to characterize disruption of spatacsin function during zebrafish development. Homozygosity mapping and direct sequencing were used to assess the ACCPN, SPG11, and SPG21 loci in four inbred kindreds originating from the Indian subcontinent. Four novel homozygous SPG11 mutations (c.442+1G>A, c.2146C>T, c.3602_3603delAT, and c.4846C>T) were identified, predicting a loss of spatacsin function in each case. To investigate the role of spatacsin during development, we additionally ascertained the complete zebrafish spg11 ortholog by reverse transcriptase PCR and 5′ RACE. Analysis of transcript expression through whole-mount in situ hybridization demonstrated ubiquitous distribution, with highest levels detected in the brain. Morpholino antisense oligonucleotide injection was used to knock down spatacsin function in zebrafish embryos. Examination of spg11 morphant embryos revealed a range of developmental defects and CNS abnormalities, and analysis of axon pathway formation demonstrated an overall perturbation of neuronal differentiation. These data confirm loss of spatacsin as the cause of SPG11-linked HSP-TCC in Asian kindreds, expanding the mutation spectrum recognized in this disorder. This study represents the first investigation in zebrafish addressing the function of a causative gene in autosomal recessive HSP and identifies a critical role for spatacsin during early neural development in vivo

    Mutation analysis of the NSD1 gene in patients with autism spectrum disorders and macrocephaly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sotos syndrome is an overgrowth syndrome characterized by macrocephaly, advanced bone age, characteristic facial features, and learning disabilities, caused by mutations or deletions of the <it>NSD1 </it>gene, located at 5q35. Sotos syndrome has been described in a number of patients with autism spectrum disorders, suggesting that <it>NSD1 </it>could be involved in other cases of autism and macrocephaly.</p> <p>Methods</p> <p>We screened the <it>NSD1 </it>gene for mutations and deletions in 88 patients with autism spectrum disorders and macrocephaly (head circumference 2 standard deviations or more above the mean). Mutation analysis was performed by direct sequencing of all exons and flanking regions. Dosage analysis of <it>NSD1 </it>was carried out using multiplex ligation-dependent probe amplification.</p> <p>Results</p> <p>We identified three missense variants (R604L, S822C and E1499G) in one patient each, but none is within a functional domain. In addition, segregation analysis showed that all variants were inherited from healthy parents and in two cases were also present in unaffected siblings, indicating that they are probably nonpathogenic. No partial or whole gene deletions/duplications were observed.</p> <p>Conclusion</p> <p>Our findings suggest that Sotos syndrome is a rare cause of autism spectrum disorders and that screening for <it>NSD1 </it>mutations and deletions in patients with autism and macrocephaly is not warranted in the absence of other features of Sotos syndrome.</p

    Evaluation of DNA Methylation Episignatures for Diagnosis and Phenotype Correlations in 42 Mendelian Neurodevelopmental Disorders.

    Get PDF
    Genetic syndromes frequently present with overlapping clinical features and inconclusive or ambiguous genetic findings which can confound accurate diagnosis and clinical management. An expanding number of genetic syndromes have been shown to have unique genomic DNA methylation patterns (called episignatures ). Peripheral blood episignatures can be used for diagnostic testing as well as for the interpretation of ambiguous genetic test results. We present here an approach to episignature mapping in 42 genetic syndromes, which has allowed the identification of 34 robust disease-specific episignatures. We examine emerging patterns of overlap, as well as similarities and hierarchical relationships across these episignatures, to highlight their key features as they are related to genetic heterogeneity, dosage effect, unaffected carrier status, and incomplete penetrance. We demonstrate the necessity of multiclass modeling for accurate genetic variant classification and show how disease classification using a single episignature at a time can sometimes lead to classification errors in closely related episignatures. We demonstrate the utility of this tool in resolving ambiguous clinical cases and identification of previously undiagnosed cases through mass screening of a large cohort of subjects with developmental delays and congenital anomalies. This study more than doubles the number of published syndromes with DNA methylation episignatures and, most significantly, opens new avenues for accurate diagnosis and clinical assessment in individuals affected by these disorders

    Generation of the Sotos syndrome deletion in mice

    Get PDF
    Haploinsufficiency of the human 5q35 region spanning the NSD1 gene results in a rare genomic disorder known as Sotos syndrome (Sotos), with patients displaying a variety of clinical features, including pre- and postnatal overgrowth, intellectual disability, and urinary/renal abnormalities. We used chromosome engineering to generate a segmental monosomy, i.e., mice carrying a heterozygous 1.5-Mb deletion of 36 genes on mouse chromosome 13 (4732471D19Rik-B4galt7), syntenic with 5q35.2–q35.3 in humans (Df(13)Ms2Dja(+/−) mice). Surprisingly Df(13)Ms2Dja(+/−) mice were significantly smaller for their gestational age and also showed decreased postnatal growth, in contrast to Sotos patients. Df(13)Ms2Dja(+/−) mice did, however, display deficits in long-term memory retention and dilation of the pelvicalyceal system, which in part may model the learning difficulties and renal abnormalities observed in Sotos patients. Thus, haploinsufficiency of genes within the mouse 4732471D19Rik–B4galt7 deletion interval play important roles in growth, memory retention, and the development of the renal pelvicalyceal system. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00335-012-9416-0) contains supplementary material, which is available to authorized users

    Role of cytoskeletal abnormalities in the neuropathology and pathophysiology of type I lissencephaly

    Get PDF
    Type I lissencephaly or agyria-pachygyria is a rare developmental disorder which results from a defect of neuronal migration. It is characterized by the absence of gyri and a thickening of the cerebral cortex and can be associated with other brain and visceral anomalies. Since the discovery of the first genetic cause (deletion of chromosome 17p13.3), six additional genes have been found to be responsible for agyria–pachygyria. In this review, we summarize the current knowledge concerning these genetic disorders including clinical, neuropathological and molecular results. Genetic alterations of LIS1, DCX, ARX, TUBA1A, VLDLR, RELN and more recently WDR62 genes cause migrational abnormalities along with more complex and subtle anomalies affecting cell proliferation and differentiation, i.e., neurite outgrowth, axonal pathfinding, axonal transport, connectivity and even myelination. The number and heterogeneity of clinical, neuropathological and radiological defects suggest that type I lissencephaly now includes several forms of cerebral malformations. In vitro experiments and mutant animal studies, along with neuropathological abnormalities in humans are of invaluable interest for the understanding of pathophysiological mechanisms, highlighting the central role of cytoskeletal dynamics required for a proper achievement of cell proliferation, neuronal migration and differentiation
    corecore