40 research outputs found

    Effects of killing methods on lipid oxidation, colour and microbial load of black soldier fly (Hermetia illucens) larvae

    Get PDF
    The projected global population growth by 2050 will require an increase in the production of high-quality food. Insects represent a promising alternative ingredient for feed with a lower environmental impact than conventional livestock such as poultry, swine and bovine species. In a context of commercial-scale production and considering the great diversity of insects, it is crucial to optimize the processing steps, including those used to kill insects. In addition to being able to maximize the nutritional and microbiological quality of the final product, insect killing methods should be rapid and effective. This project aims to optimize killing methods, i.e., blanching, desiccation, freezing (−20 °C; −40 °C; liquid nitrogen), high hydrostatic pressure, grinding and asphyxiation (CO2; N2; vacuum conditioning), and to evaluate their impact on the composition, lipid oxidation, colour and microbiological quality on the black soldier fly larvae. Blanching appears to be the most appropriate strategy since it is a rapid and effective killing method reducing larval moisture while minimizing lipid oxidation, microbial contamination and colour alteration. Ultimately, this work will help to establish a standardized protocol that meets the Canadian regulatory quality requirements for feed. Abstract : Black soldier fly (BSF) larvae represent a promising alternative ingredient for animal feed. Post-production processing can, however, affect their quality. This project aimed to optimize larval killing by comparing the effects on the nutritional and microbiological quality of 10 methods, i.e., blanching (B = 40 s), desiccation (D = 60 °C, 30 min), freezing (F20 = −20 °C, 1 h; F40 = −40 °C, 1 h; N = liquid nitrogen, 40 s), high hydrostatic pressure (HHP = 3 min, 600 MPa), grinding (G = 2 min) and asphyxiation (CO2 = 120 h; N2 = 144 h; vacuum conditioning, V = 120 h). Some methods affected the pH (B, asphyxiation), total moisture (B, asphyxiation and D) and ash contents (B, p < 0.001). The lipid content (asphyxiation) and their oxidation levels (B, asphyxiation and D) were also affected (p < 0.001). Killing methods altered the larvae colour during freeze-drying and in the final product. Blanching appears to be the most appropriate strategy since it minimizes lipid oxidation (primary = 4.6 ± 0.7 mg cumen hydroperoxide (CHP) equivalents/kg; secondary = 1.0 ± 0.1 mg malondialdehyde/kg), reduces microbial contamination and initiates dehydration (water content = 78.1 ± 1.0%). We propose herein, an optimized protocol to kill BSF that meet the Canadian regulatory requirements of the insect production and processing industry

    Comparison of black soldier fly larvae pre-treatments and drying techniques on the microbial load and physico-chemical characteristics

    Get PDF
    Black soldier fly larvae (BSFL) are good candidates for upcycling wet organic residuals. Like other unprocessed raw animal products, BSFL require processing to prevent spoilage and degradation during storage and to facilitate their use as feed ingredients. In this study, hot-air drying and freeze-drying were examined as means to ensure long-term preservation. Pre-treatments of larvae, such as puncturing, blanching (40 s) and scalding (2, 4, 6 and 8 min) in boiling water reduced drying times, most likely by affecting the integrity of the wax-coated cuticle that protects the larvae against desiccation. Overall, the larvae dried two to six times faster using hot-air compared to freeze-drying, and larvae pre-treatments were proven to effectively improve drying efficacy. Pre-treating larvae in boiling water followed by a shorter drying time with hot air was effective at reducing primary and secondary oxidation as well as darkening/browning (colour lightness, L* value) compared to the untreated control (rawthawed) larvae. The larvae pre-treatments in boiling water also led to a significant reduction in microbial load (3.21 to 4.83 log) in the dry product compared to the control. BSFL powder, produced from grinding thawed larvae that were pre-treated for 4 min in boiling water before being dried in hot air (60 °C; 6 h), had a water activity below 0.4. This led to a relatively stable product with limited colour changes over a 30-day storage period. These processing treatments also resulted in a product with no detectable Salmonella and Escherichia coli counts ranging from 100 to 1000 cfu/g. Overall, the powdered BSFL product was deemed suitable to incorporate into pelleted feed under the current regulations in Canada

    The Arctic freshwater system : changes and impacts

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): G04S54, doi:10.1029/2006JG000353.Dramatic changes have been observed in the Arctic over the last century. Many of these involve the storage and cycling of fresh water. On land, precipitation and river discharge, lake abundance and size, glacier area and volume, soil moisture, and a variety of permafrost characteristics have changed. In the ocean, sea ice thickness and areal coverage have decreased and water mass circulation patterns have shifted, changing freshwater pathways and sea ice cover dynamics. Precipitation onto the ocean surface has also changed. Such changes are expected to continue, and perhaps accelerate, in the coming century, enhanced by complex feedbacks between the oceanic, atmospheric, and terrestrial freshwater systems. Change to the arctic freshwater system heralds changes for our global physical and ecological environment as well as human activities in the Arctic. In this paper we review observed changes in the arctic freshwater system over the last century in terrestrial, atmospheric, and oceanic systems.The authors gratefully acknowledge the National Science Foundation (NSF) for funding this synthesis work. This paper is principally the work of authors funded under the NSF-funded Freshwater Integration (FWI) study

    Neuro‐oxysterols and neuro‐sterols as ligands to nuclear receptors, GPCRs, ligand‐gated ion channels and other protein receptors

    Get PDF
    The brain is the most cholesterol rich organ in the body containing about 25% of the body’s free cholesterol. Cholesterol cannot pass the blood brain barrier and be imported or exported, instead it is synthesised in situ and metabolised to oxysterols, oxidised forms of cholesterol, which can pass the blood brain barrier. 24S-Hydroxycholesterol is the dominant oxysterol in brain after parturition but during development a myriad of other oxysterols are produced which persist as minor oxysterols after birth. During both development and in later life, oxysterols and other sterols interact with a variety of different receptors, including nuclear receptors, membrane bound G protein-coupled receptors, the oxysterol/sterol sensing proteins INSIG and SCAP, and the ligand-gated ion channel N-methyl-D-aspartate receptors found in nerve cells. In this review we summarise the different oxysterols and sterols found in the central nervous system whose biological activity is transmitted via these different classes of protein receptors

    Data from: Statistical evidence for common ancestry: application to primates

    No full text
    Since Darwin, biologists have come to recognize that the theory of descent from common ancestry is very well supported by diverse lines of evidence. However, while the qualitative evidence is overwhelming, we also need formal methods for quantifying the evidential support for common ancestry (CA) over the alternative hypothesis of separate ancestry (SA). In this paper we explore a diversity of statistical methods, using data from the primates. We focus on two alternatives to CA, species SA (the separate origin of each named species) and family SA (the separate origin of each family). We implemented statistical tests based on morphological, molecular, and biogeographic data and developed two new methods: one that tests for phylogenetic autocorrelation while correcting for variation due to confounding ecological traits and a method for examining whether fossil taxa have fewer derived differences than living taxa. We overwhelmingly rejected both species and family SA, with infinitesimal p-values. We compare these results with those from two companion papers, which also found tremendously strong support for the CA of all primates, and discuss future directions and general philosophical issues that pertain to statistical testing of historical hypotheses such as CA

    Modeling analysis of the effect of iron enrichment on dimethyl sulfide dynamics in the NE Pacific (SERIES experiment)

    Get PDF
    The large-scale iron enrichment conducted in the NE Pacific during the Subarctic Ecosystem Response to Iron Enrichment Study (SERIES) triggered a phytoplankton bloom dominated successively by nanophytoplankton and large diatoms. During the first 14 days, surface dimethyl sulfide (DMS) levels increased both inside (up to 22 nmol L-1) and outside (up to 19 nmol L-1) the patch, with no consistent Fe effect. Later, DMS concentrations became sixfold lower inside the patch than outside. In this study, we used a DMS budget module embedded in a one-dimensional ocean turbulence model to investigate the contribution of the interacting physical, photochemical, and biological processes to this particular DMS response. Temporal variations in biological net DMS production were reconstructed using an inverse modeling approach. Our results show that short-term (days) variations in both the physical processes (i.e., turbulent mixing and ventilation) and the biological cycling of DMS are needed to explain the time evolution of DMS concentrations both outside and inside the Fe-enriched patch. The biological net DMS production was generally high (up to 0.35 nmol L-1 h-1) and comparable outside and inside the patch during the first 10 days, corresponding to the observed accumulation of DMS inside and outside the patch. Later, it became negative (net DMS biological consumption) inside the patch, suggesting a change in dimethylsulfoniopropionate bacterial metabolism. This study stresses the importance of short-term variations in biological processes and their sensitivity to the physical environment in shaping the DMS response to iron enrichment
    corecore