8 research outputs found

    Función de la vía de señalización WNT en la proliferación, diferenciación y transformación celular tiroidea

    Full text link
    Tesis doctoral inédita, leída en la Universidad Autónoma de Madrid, Facultad de Medicina, Departamento de Bioquímica. Fecha de lectura: 15 de Marzo de 201

    A novel role for the tumor suppressor gene itf2 in tumorigenesis and chemotherapy response

    Full text link
    Despite often leading to platinum resistance, platinum-based chemotherapy continues to be the standard treatment for many epithelial tumors. In this study we analyzed and validated the cytogenetic alterations that arise after treatment in four lung and ovarian paired cisplatin-sensitive/resistant cell lines by 1-million microarray-based comparative genomic hybridization (array-CGH) and qRT-PCR methodologies. RNA-sequencing, functional transfection assays, and gene-pathway activity analysis were used to identify genes with a potential role in the development of this malignancy. The results were further explored in 55 lung and ovarian primary tumors and control samples, and in two extensive in silico databases. Long-term cell exposure to platinum induces the frequent deletion of ITF2 gene. Its expression re-sensitized tumor cells to platinum and recovered the levels of Wnt/β-catenin transcriptional activity. ITF2 expression was also frequently downregulated in epithelial tumors, predicting a worse overall survival. We also identified an inverse correlation between ITF2 and HOXD9 expression, revealing that Non-small cell lung cancer (NSCLC) patients with lower expression of HOXD9 had a better overall survival rate. We defined the implication of ITF2 as a molecular mechanism behind the development of cisplatin resistance probably through the activation of the Wnt-signaling pathway. This data highlights the possible role of ITF2 and HOXD9 as novel therapeutic targets for platinum resistant tumors.This research was funded by the Fondo de Investigación Sanitaria-Instituto de Salud Carlos III, PI15/00186 and PI18/00050, CP19/00063, and CM19/00100 for HR and by MINECO, RTC-2016-5314-1 to I.I.C; by the MINECO, SAF2016-75531-R, by the CAM B2017/BMD-3724 and by the AECC GCB14142311CRES to P.S; and the European Regional Development Fund/European Social Fund FIS (FEDER/FSE, Una Manera de Hacer Europa)

    Shorter telomere length is associated with COVID-19 hospitalization and with persistence of radiographic lung abnormalities

    Get PDF
    Background Age and comorbidity are the main determinants of COVID-19 outcome. Shorter leukocyte telomere length (TL), a hallmark of biological aging, has been associated with worse COVID-19 outcomes. We sought to determine TL in patients with severe COVID-19 requiring hospitalization to analyze whether clinical outcomes and post-COVID-19 manifestations are associated with shorter TL. Results We analyzed 251 patients with PCR-confirmed COVID-19, hospitalized in the first months of the pandemics. We determined TL in PBL at admission by quantitative-PCR (qPCR) analysis in patients. A healthy cohort from the same area with a similar age range (n = 169) was used to calculate TL Z-scores. After hospital discharge, 144 COVID-19 survivors were followed-up for persistent COVID-19 manifestations. A second TL determination was performed in a smaller group of 63 patients 1 year later and compared with baseline TL. Hospitalized COVID-19 patients had a decreased baseline age-adjusted TL Z-score compared to the reference group. No differences in Z-scores were observed in patients with different COVID-19 outcomes, classified as WHO ordinal scores. In 144 patients, followed for a median of 8 months, post-COVID manifestations were not associated to differences in TL. Persistence of lung radiographic abnormalities was associated with shorter baseline TL. In patients with a second TL determination, further telomere shortening (TS) was observed in 35% and telomere lengthening in 49%. Patients with further TS had suffered a more severe disease. Conclusion Shorter TL is associated with COVID-19 hospitalization but not with hospital clinical outcomes nor with persistent post-COVID-19 manifestations. Delayed resolution of radiographic lung abnormalities was also associated with shorter TL.This work was supported by a research grant from FOREUM Foundation for Research in Rheumatology. Authors also received financial support from Fondo de Investigación Sanitaria, Instituto de Salud Carlos III (PI19/01129, COV20/00181, and RICOR RD21/0002) co-financed by the European Regional Development Fund (FEDER). MR.Peer reviewe

    GSE4‐loaded nanoparticles a potential therapy for lung fibrosis that enhances pneumocyte growth, reduces apoptosis and DNA damage

    Get PDF
    Idiopathic pulmonary fibrosis is a lethal lung fibrotic disease, associated with aging with a mean survival of 2-5 years and no curative treatment. The GSE4 peptide is able to rescue cells from senescence, DNA and oxidative damage, inflammation, and induces telomerase activity. Here, we investigated the protective effect of GSE4 expression in vitro in rat alveolar epithelial cells (AECs), and in vivo in a bleomycin model of lung fibrosis. Bleomycin-injured rat AECs, expressing GSE4 or treated with GSE4-PLGA/PEI nanoparticles showed an increase of telomerase activity, decreased DNA damage, and decreased expression of IL6 and cleaved-caspase 3. In addition, these cells showed an inhibition in expression of fibrotic markers induced by TGF-β such as collagen-I and III among others. Furthermore, treatment with GSE4-PLGA/PEI nanoparticles in a rat model of bleomycin-induced fibrosis, increased telomerase activity and decreased DNA damage in proSP-C cells. Both in preventive and therapeutic protocols GSE4-PLGA/PEI nanoparticles prevented and attenuated lung damage monitored by SPECT-CT and inhibited collagen deposition. Lungs of rats treated with bleomycin and GSE4-PLGA/PEI nanoparticles showed reduced expression of α-SMA and pro-inflammatory cytokines, increased number of pro-SPC-multicellular structures and increased DNA synthesis in proSP-C cells, indicating therapeutic efficacy of GSE4-nanoparticles in experimental lung fibrosis and a possible curative treatment for lung fibrotic patients

    Genetic analyses of aplastic anemia and idiopathic pulmonary fibrosis patients with short telomeres, possible implication of DNA-repair genes

    Get PDF
    Background: Telomeres are nucleoprotein structures present at the terminal region of the chromosomes. Mutations in genes coding for proteins involved in telomere maintenance are causative of a number of disorders known as telomeropathies. The genetic origin of these diseases is heterogeneous and has not been determined for a significant proportion of patients. Methods: This article describes the genetic characterization of a cohort of patients. Telomere length was determined by Southern blot and quantitative PCR. Nucleotide variants were analyzed either by high-resolution melting analysis and Sanger sequencing of selected exons or by massive sequencing of a panel of genes. Results: Forty-seven patients with telomere length below the 10% of normal population, affected with three telomeropathies: dyskeratosis congenita (4), aplastic anemia (22) or pulmonary fibrosis (21) were analyzed. Eighteen of these patients presented known pathogenic or novel possibly pathogenic variants in the telomere-related genes TERT, TERC, RTEL1, CTC1 and ACD. In addition, the analyses of a panel of 188 genes related to haematological disorders indicated that a relevant proportion of the patients (up to 35%) presented rare variants in genes related to DNA repair or in genes coding for proteins involved in the resolution of complex DNA structures, that participate in telomere replication. Mutations in some of these genes are causative of several syndromes previously associated to telomere shortening

    CIBERER: Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    13 páginas,1 figura, 3 tablas, 1 apéndice. Se extraen los autores pertenecientes a The CIBERER network que trabajan en Centros del CSIC del Appendix ACIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research.This study has been funded by Instituto de Salud Carlos III (ISCIII) and Spanish Ministry of Science and InnovationPeer reviewe

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    MiR-151a: a robust endogenous control for normalizing small extracellular vesicle cargo in human cancer

    No full text
    Abstract Small extracellular vesicles (sEVs) in the blood of cancer patients contain higher amounts of tumor markers than those identified as free-circulating. miRNAs have significant biomedical relevance due to their high stability and feasible detection. However, there is no reliable endogenous control available to measure sEVs-miRNA content, impairing the acquisition of standardized consistent measurements in cancer liquid biopsy. In this study, we identified three miRNAs from a panel of nine potential normalizers that emerged from a comprehensive analysis comparing the sEV-miRNA profile of six lung and ovarian human cancer cell lines in the absence of or under different conditions. Their relevance as normalizers was tested in 26 additional human cancer cell lines from nine different tumor types undergoing chemotherapy or radiotherapy treatment. The validation cohorts were comprised of 242 prospective plasma and ascitic fluid samples from three different human tumor types. Variability and normalization properties were tested in comparison to miR-16, the most used control to normalize free-circulating miRNAs in plasma. Our results indicate that miR-151a is consistently represented in small extracellular vesicles with minimal variability compared to miR-16, providing a novel normalizer to measure small extracellular vesicle miRNA content that will benefit liquid biopsy in cancer patients
    corecore