123 research outputs found

    Seasonal changes in the pelagic catch of two clupeid zooplanktivores in relation to the abundance of copepod zooplankton in the northern end of Lake Tanganyika

    Get PDF
    Catches of clupeid fish were recorded twice a week from February 2007 to May 2008 in the northern end of Lake Tanganyika, and allocated to species (Stolothrissa tanganicae and Limnothrissa miodon) according to representative catch samples from ten artisanal lift-net fishing units. In each sample, clupeids were measured and weighed for length frequency analysis. Age was estimated from length growth curves based on otolith weight. Copepod zooplankton was sampled twice a month from February 2007 to January 2008. Peaks of copepod zooplankton were recorded in the rainy season, and there was overall a tight positive correlation between monthly rainfall and copepod biomass. The clupeids appeared in the catch at 30-50mm length when they were two-three (S. tanganicae) or three-four months old (L. miodon). For S. tanganicae, three catch peaks were due to cohorts born when copepod food was abundant, but one catch peak was due to a cohort which originated in the dry season when copepods were scarce. Likewise, two of the L. miodon cohorts giving rise to high catches likely originated from the rainy season when food was abundant, but two cohorts apparently originated from the dry season with low food conditions. The success of several cohorts of both clupeids therefore seems to be linked to rainfall and abundance of copepods, but sometimes strong cohorts could arise even under poor food conditions. Both species were recruited in the catch far before the age of maturity, making them vulnerable to overfishing.</p

    Modelling the impact of higher temperature on the phytoplankton of a boreal lake

    Get PDF
    We linked the models PROTECH and MyLake to test potential impacts of climate-changeinduced warming on the phytoplankton community of Pyhäjärvi, a lake in southwest Finland. First, we calibrated the models for the present conditions, which revealed an apparent high significance of internal nutrient loading for Pyhäjärvi. We then estimated the effect of two climate change scenarios on lake water temperatures and ice cover duration with MyLake. Finally, we used those outputs to drive PROTECH to predict the resultant phytoplankton community. It was evident that cyanobacteria will grow significantly better in warmer water, especially in the summer. Even if phosphorus and nitrogen loads to the lake remain the same and there is little change in the total chlorophyll a concentrations, a higher proportion of the phytoplankton community could be dominated by cyanobacteria. The model outputs provided no clear evidence that earlier ice break would advance the timing of the diatom spring bloom.peerReviewe

    Internal phosphorus load estimation during biomanipulation in a large polymictic and mesotrophic lake

    Get PDF
    We quantified internal phosphorus (P) load for 26 years in the polymictic, large (155 km(2)) and shallow (mean depth 5.5 m) Lake Sakylan Pyhajarvi, which was heavily biomanipulated by fish removal. Internal load was estimated as (1) partially net estimates from in situ P summer increases, (2) net estimates from P budgets (mass balance approach), and (3) gross estimates from predicted active sediment release area and sediment P release, dependent on August lake temperature. Long-term averages of these estimates were similar and large at about 60% of average external load (105 mg m(-2) yr(-1)) and were larger than external load in years with high water temperature and low water load. Regression analysis revealed that external load is decreasing but internal load is increasing over time. Internal load was negatively correlated with annual water load and positively correlated with lake water temperature. Long-term average annual or summer P concentrations are adequately predicted by a P mass balance model that includes external load, internal load (Method 3), and sedimentation as independently predicted retention. Predictability was poor for individual years, however, partially due to the poor correlation of observed lake and outflow P concentrations, the variable abundance of planktivorous fish, and reflecting the violation of the steady state assumption when individual years are modeled. Scenario modeling shows that biomanipulation cancels out the effects of internal load and forecasts a rapid increase of internal load and P concentration due to climate change; therefore, measures that further decrease external and internal P load and strengthen biomanipulation are recommended

    Limnocnida tanganyicae medusae (Cnidaria: Hydrozoa): a semiautonomous microcosm in the food web of Lake Tanganyika

    Get PDF
    Medusae are important members of marine food webs, but are rare in lakes. In one of the largest lakes in the world, Lake Tanganyika, a small medusa (Limnocnida tanganyicae) is a prominent component of zooplankton. We used field and laboratory methods to study the ecological role of Lake Tanganyika medusae, which occasionally reached high local densities in the whole epilimnion. The largest individuals showed low amplitude, diel vertical migration which minimized their exposure to harmful UV radiation and also may be important for picocyanobacteria regularly present in the medusae. The endosymbiotic picocyanobacteria differed morphologically among medusae and were predominantly one Lake Biwa type Cyanobium sp. that typically was abundant in the water column. Under light, some medusae were net primary producers. Although nitrogen stable isotopic ratios indicated that the free-living cyanobacteria were nitrogen-fixers, the picocyanobacteria in medusae obtained nitrogen predominantly from their host. Stable isotopic ratios of carbon and nitrogen further suggested that copepods were the most likely prey for the medusae. Lake Tanganyika medusae apparently base their metabolism both on animal and plant sources, with possible internal cycling of nutrients; however, the role of picocyanobacteria gardening in the Lake Tanganyika ecosystem and its medusae requires quantification

    Spatial and seasonal variation in reproductive indices of the clupeids Limnothrissa miodon and Stolothrissa tanganicae in the Congolese waters of northern Lake Tanganyika

    Get PDF
    peer reviewedKnowledge on the reproductive biology of the endemic clupeids Limnothrissa miodon and Stolothrissa tanganicae, two main target species of the pelagic fisheries of Lake Tanganyika, is constrained by fragmented monitoring activities. Here, we investigate the nursing areas of L. miodon, the timing of reproductive activities of littoral and pelagic L. miodon, and the timing of reproductive activities of pelagic S. tanganicae in the Congolese waters of the northern end of Lake Tanganyika (Bujumbura sub-basin). Nursing areas were determined year-round (2009–2010) based on the presence of clupeid larvae at two sandy and two stony beaches. The gonadosomatic index (GSI) and the proportion of fish having ripe gonads were used to study variation in reproductive indices in space (littoral vs. pelagic zones) during one year (2013–2014), as well as in time (dry vs. rainy season) during three years (2013–2016). Larvae of L. miodon were more frequently encountered on sandy than on stony beaches. Mature L. miodon females were more abundant in the littoral than in the pelagic zone, while the proportion of mature males in both habitats was similar. Irregular, low amplitude peaks could be distinguished in the GSI and proportion of mature males and females, but averages only differed between the dry and the rainy season in males. In contrast, GSI and proportions of mature males and females in S. tanganicae were higher in the dry season than in the rainy season. The reproductive effort of males and females of S. tanganicae and littoral L. miodon, but not pelagic L. miodon, was strongly synchronized. Interestingly, reproductive investment was also synchronised between pelagic male L. miodon, and pelagic S. tanganicae. Our time series strongly supports the view that L. miodon reproduces year-round in the littoral zone, while reproduction in S. tanganicae is seasonal. For fisheries management, we recommend year-round protection of sandy beaches, which are the main breeding grounds for L. miodon. © 2022, Royal Belgian Institute of Natural Sciences. All rights reserved

    Daphniaperformance on diets containing different combinations of high-quality algae, heterotrophic bacteria, and allochthonous particulate organic matter

    Get PDF
    Filter-feeding zooplankton in lakes feed on a mixture of phytoplankton, bacteria, and terrestrial particles and the proportions and nutritional value of these components can be highly variable. However, the extent to which food quality interacts with food quantity in affecting overall zooplankton performance is not yet fully resolved. Here we performed laboratory feeding experiments to test how the performance of the unselective filter feederDaphnia galeatawas affected if various quantities of high-quality food (the phytoplanktonRhodomonas) were diluted with low-quality food such as heterotrophic bacteria (Pseudomonas) or terrestrial detritus particles (t-POM) from the riparian zone of a boreal forest stream. We hypothesised: that increased proportions of bacteria and t-POM in the diet will lead to decreased survival, somatic growth; and reproduction ofDaphniadespite the presence of phytoplankton; that these effects are more pronounced for t-POM than for heterotrophic bacteria; and that this response is stronger when phytoplankton availability is low. Increasing the concentrations ofPseudomonasaffectedDaphniasurvival, growth, and reproduction negatively whenRhodomonaswas available at intermediate (0.37 mgC/L) and high (0.55 mgC/L) quantities. WhenRhodomonasquantity was low (0.22 mgC/L), the addition ofPseudomonasgenerally resulted in betterDaphniaperformance except at very high concentrations of the bacterium relative toRhodomonas. In contrast, the addition of t-POM was detrimental for overallDaphniaperformance at allRhodomonasconcentrations. Daphniaperformance was best described by a model including the interaction between food quality and quantity, with stronger negative effects onDaphniawhen high-quality food was supplemented with t-POM than withPseudomonas. The results indicate that the ability of zooplankton to use low-quality food is affected by the concurrent availability of high-quality food. Furthermore, food sources that can be used but do not fulfil dietary requirements of grazers (e.g. bacteria), may still provide nutritional benefits as long as other complementary food components are available in sufficient quantities to compensate for biochemical deficiencies. Therefore, we conclude that heterotrophic bacteria, but not peat layer t-POM, can be an important component of zooplankton diets in boreal lakes, especially if the concentration of phytoplankton is low

    Recent ecological change in ancient lakes

    Get PDF
    Ancient lakes are among the best archivists of past environmental change, having experienced more than one full glacial cycle, a wide range of climatic conditions, tectonic events, and long association with human settlements. These lakes not only record long histories of environmental variation and human activity in their sediments, but also harbor very high levels of biodiversity and endemism. Yet, ancient lakes are faced with a familiar suite of anthropogenic threats, which may degrade the unusual properties that make them especially valuable to science and society. In all ancient lakes for which data exist, significant warming of surface waters has occurred, with a broad range of consequences. Eutrophication threatens both native species assemblages and regional economies reliant on clean surface water, fisheries, and tourism. Where sewage contributes nutrients and heavy metals, one can anticipate the occurrence of less understood emerging contaminants, such as pharmaceuticals, personal care products, and microplastics that negatively affect lake biota and water quality. Human populations continue to increase in most of the ancient lakes’ watersheds, which will exacerbate these concerns. Further, human alterations of hydrology, including those produced through climate change, have altered lake levels. Co‐occurring with these impacts have been intentional and unintentional species introductions, altering biodiversity. Given that the distinctive character of each ancient lake is strongly linked to age, there may be few options to remediate losses of species or other ecosystem damage associated with modern ecological change, heightening the imperative for understanding these systems

    Occurrence of two-year cyclicity, "saw-blade fluctuation", in vendace populations in Finland

    Get PDF
    The tendency towards two-year cyclicity is considered typical of many Fennoscandian vendace populations, especially in fluctuation of recruitment, based on time series of individual lakes. We used two robust indicators to identify and quantify two-year cycles in vendace population proxy time series at different life-stages - spawning stock biomass (SB), density of newly hatched larvae (LD) and recruitment (REC) - from 22 Finnish lakes. Then we applied Fisher's meta-analytical test to assess the adequacy of the evidence to support the hypothesis that vendace population dynamics include two-year cyclicity. The results supported this hypothesis for REC but not for SB or LD. Yet. the indicators and test are conservative and time-series of SB and LD are shorter than those for REC. The appearance of cycles in REC is associated with high post-recruitment mortality, consequently practically only one spawning per cohort. Cycles may be typical for the recovery period from low abundance period also. Still, some populations with moderate post-REC mortality and non-cyclic SB abundance exhibited cycles in REC. Such dynamics presuppose the existence of more complex regulation based on the interaction of different life stages

    Can space-for-time-substitution surveys represent zooplankton biodiversity patterns and their relationship to environmental drivers?

    Get PDF
    Space-for-Time-Substitution surveys (SFTS) are commonly used to describe zooplankton community dynamics and to determine lake ecosystem health. SFTS surveys typically combine single point observations from many lakes to evaluate the response of zooplankton community structure and dynamics (e.g., species abundance and biomass, diversity, demographics and modeled rate processes) to spatial gradients in hypothesized environmental drivers (e.g., temperature, nutrients, predation), in lieu of tracking such responses over long time scales. However, the reliability and reproducibility of SFTS zooplankton surveys have not yet been comprehensively tested against empirically-based community dynamics from longterm monitoring efforts distributed worldwide. We use a recently compiled global data set of more than 100 lake zooplankton time series to test whether SFTS surveys can accurately capture zooplankton diversity, and the hypothesized relationship with temperature, using simulated SFTS surveys of the time series data. Specifically, we asked: (1) to what degree can SFTS surveys capture observed biodiversity dynamics; (2) how does timing and duration of sampling affect detected biodiversity patterns; (3) does biodiversity ubiquitously increase with temperature across lakes, or vary by climate zone or lake type; and (4) do results from SFTS surveys produce comparable biodiversity-temperature relationship(s) to empirical data within and among lakes? Testing biodiversity-ecosystem function (BEF) relationships, and the drivers of such relationships, requires a solid data basis. Our work provides a global perspective on the design and usefulness of (long-term) zooplankton monitoring programs and how much confidence we can place in the zooplankton biodiversity patterns observed from SFTS surveys

    Trophic structure of Lake Tanganyika: Carbon flows in the pelagic food web

    Full text link
    peer reviewedThe sources of carbon for the pelagic fish production in Lake Tanganyika, East Africa, were evaluated in a comprehensive multi-year study. Phytoplankton production was assessed from seasonal in situ 14C and simulated in situ results, using on-board incubator measurements and knowledge of the vertical distributions of chlorophyll and irradiance. Bacterioplankton production was measured on two cruises with the leucine incorporation method. Zooplankton production was calculated from seasonal population samples, the carbon contents of different developmental stages and growth rates derived from published sources. Fish production estimates were based on hydroacoustic assessment of pelagic fish biomass and data on growth rates obtained from length frequency analyses and checked against daily increment rings of fish otoliths. Estimates for primary production (426-662 g C m-2 a-1) were 47-128% higher than previously published values. Bacterioplankton production amounted to about 20% of the primary production. Zooplankton biomass (1 g C m-2) and production (23 g C m-2 a-1) were 50% lower than earlier reported, suggesting that the carbon transfer efficiency from phytoplankton to zooplankton was low, in contrast to earlier speculations. Planktivorous fish biomass (0.4 g C m-2) and production (1.4-1.7 g C m-2 a-1) likewise indicated a low carbon transfer efficiency from zooplankton into planktivorous fish production. Relatively low transfer efficiencies are not unexpected in a deep tropical lake, because of the generally high metabolic losses due to the high temperatures and presumably high costs of predator avoidance. The total fisheries yield in Lake Tanganyika in the mid- 1990s was 0.08-0.14% of pelagic primary production, i.e. within the range of typical values in lakes. Thus, no special mechanisms need be invoked to explain the productivity of fisheries in Lake Tanganyika
    corecore