35 research outputs found

    Seal of transparency heritage in the CISMeF quality-controlled health gateway

    Get PDF
    BACKGROUND: It is an absolute necessity to continually assess the quality of health information on the Internet. Quality-controlled subject gateways are Internet services which apply a selected set of targeted measures to support systematic resource discovery. METHODS: The CISMeF health gateway became a contributor to the MedCIRCLE project to evaluate 270 health information providers. The transparency heritage consists of using the evaluation performed on providers that are referenced in the CISMeF catalogue for evaluating the documents they publish, thus passing on the transparency label from the publishers to their documents. RESULTS: Each site rated in CISMeF has a record in the CISMeF database that generates an RDF into HTML file. The search tool Doc'CISMeF displays information originating from every publisher evaluated with a specific MedCIRCLE button, which is linked to the MedCIRCLE central repository. Starting with 270 websites, this trust heritage has led to 6,480 evaluated resources in CISMeF (49.8% of the 13,012 resources included in CISMeF). CONCLUSION: With the MedCIRCLE project and transparency heritage, CISMeF became an explicit third party

    Transgenic Expression of Soluble Human CD5 Enhances Experimentally-Induced Autoimmune and Anti-Tumoral Immune Responses

    Get PDF
    CD5 is a lymphoid-specific transmembrane glycoprotein constitutively expressed on thymocytes and mature T and B1a lymphocytes. Current data support the view that CD5 is a negative regulator of antigen-specific receptor-mediated signaling in these cells, and that this would likely be achieved through interaction with CD5 ligand/s (CD5L) of still undefined nature expressed on immune or accessory cells. To determine the functional consequence of loss of CD5/CD5L interaction in vivo, a new transgenic mouse line was generated (shCD5EÎŒTg), expressing a circulating soluble form of human CD5 (shCD5) as a decoy to impair membrane-bound CD5 function. These shCD5EÎŒTg mice showed an enhanced response to autologous antigens, as deduced from the presentation of more severe forms of experimentally inducible autoimmune disease (collagen-induced arthritis, CIA; and experimental autoimmune encephalitis, EAE), as well as an increased anti-tumoral response in non-orthotopic cancer models (B16 melanoma). This enhancement of the immune response was in agreement with the finding of significantly reduced proportions of spleen and lymph node Treg cells (CD4+CD25+FoxP3+), and of peritoneal IL-10-producing and CD5+ B cells, as well as an increased proportion of spleen NKT cells in shCD5EÎŒTg mice. Similar changes in lymphocyte subpopulations were observed in wild-type mice following repeated administration of exogenous recombinant shCD5 protein. These data reveal the relevant role played by CD5/CD5L interactions on the homeostasis of some functionally relevant lymphocyte subpopulations and the modulation of immune responses to autologous antigens

    HVEM Signalling Promotes Colitis

    Get PDF
    Background Tumor necrosis factor super family (TNFSF) members regulate important processes involved in cell proliferation, survival and differentiation and are therefore crucial for the balance between homeostasis and inflammatory responses. Several members of the TNFSF are closely associated with inflammatory bowel disease (IBD). Thus, they represent interesting new targets for therapeutic treatment of IBD. Methodology/Principal Findings We have used mice deficient in TNFSF member HVEM in experimental models of IBD to investigate its role in the disease process. Two models of IBD were employed: i) chemical-induced colitis primarily mediated by innate immune cells; and ii) colitis initiated by CD4+CD45RBhigh T cells following their transfer into immuno-deficient RAG1-/- hosts. In both models of disease the absence of HVEM resulted in a significant reduction in colitis and inflammatory cytokine production. Conclusions These data show that HVEM stimulatory signals promote experimental colitis driven by innate or adaptive immune cells

    CD5 expression promotes IL-10 production through activation of the MAPK/Erk pathway and upregulation of TRPC1 channels in B lymphocytes.

    Get PDF
    CD5 is constitutively expressed on T cells and a subset of mature normal and leukemic B cells in patients with chronic lymphocytic leukemia (CLL). Important functional properties are associated with CD5 expression in B cells, including signal transducer and activator of transcription 3 activation, IL-10 production and the promotion of B-lymphocyte survival and transformation. However, the pathway(s) by which CD5 influences the biology of B cells and its dependence on B-cell receptor (BCR) co-signaling remain unknown. In this study, we show that CD5 expression activates a number of important signaling pathways, including Erk1/2, leading to IL-10 production through a novel pathway independent of BCR engagement. This pathway is dependent on extracellular calcium (Ca2+) entry facilitated by upregulation of the transient receptor potential channel 1 (TRPC1) protein. We also show that Erk1/2 activation in a subgroup of CLL patients is associated with TRPC1 overexpression. In this subgroup of CLL patients, small inhibitory RNA (siRNA) for CD5 reduces TRPC1 expression. Furthermore, siRNAs for CD5 or for TRPC1 inhibit IL-10 production. These findings provide new insights into the role of CD5 in B-cell biology in health and disease and could pave the way for new treatment strategies for patients with B-CLL

    CD6 and Syntaxin Binding Protein 6 Variants and Response to Tumor Necrosis Factor Alpha Inhibitors in Danish Patients with Rheumatoid Arthritis

    Get PDF
    <div><h3>Background</h3><p>TNFα inhibitor therapy has greatly improved the treatment of patients with rheumatoid arthritis, however at least 30% do not respond. We aimed to investigate insertions and deletions (INDELS) associated with response to TNFα inhibitors in patients with rheumatoid arthritis (RA).</p> <h3>Methodology and Principal Findings</h3><p>In the DANBIO Registry we identified 237 TNFα inhibitor naĂŻve patients with RA (81% women; median age 56 years; disease duration 6 years) who initiated treatment with infliximab (n = 160), adalimumab (n = 56) or etanercept (n = 21) between 1999 and 2008 according to national treatment guidelines. Clinical response was assessed at week 26 using EULAR response criteria. Based on literature, we selected 213 INDELS potentially related to RA and treatment response using the GeneVaÂź (Compugen) <em>in silico</em> database of 350,000 genetic variations in the human genome. Genomic segments were amplified by polymerase chain reaction (PCR), and genotyped by Sanger sequencing or fragment analysis. We tested the association between genotypes and EULAR good response versus no response, and EULAR good response versus moderate/no response using Fisher’s exact test. At baseline the median DAS28 was 5.1. At week 26, 68 (29%) patients were EULAR good responders, while 81 (34%) and 88 (37%) patients were moderate and non-responders, respectively. A 19 base pair insertion within the CD6 gene was associated with EULAR good response vs. no response (OR = 4.43, 95% CI: 1.99–10.09, p = 7.211×10<sup>−5</sup>) and with EULAR good response vs. moderate/no response (OR = 4.54, 95% CI: 2.29–8.99, p = 3.336×10<sup>−6</sup>). A microsatellite within the syntaxin binding protein 6 (STXBP6) was associated with EULAR good response vs. no response (OR = 4.01, 95% CI: 1.92–8.49, p = 5.067×10<sup>−5</sup>).</p> <h3>Conclusion</h3><p>Genetic variations within CD6 and STXBP6 may influence response to TNFα inhibitors in patients with RA.</p> </div

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore