160 research outputs found

    Influence of metal process micronic and submicronic particles on vegetables quality and ecosystems

    Get PDF
    International audienceImpact of atmospheric process particles enriched with metals (PM) on various vegetables was studied. Foliar metal interception was measured and calculated. Soil-plant transfer and phyto-toxicity were also studied. Influence of species and washing procedure on metal burning was observed. High correlation was obtained between measured and simulated lead plant uptake values. Ageing effect in polluted soils was highlighted with stabilisation or mobilization of metals in function of contact duration between soils and PM

    Self-Assembling Peptide Nanofiber Scaffolds Accelerate Wound Healing

    Get PDF
    Cutaneous wound repair regenerates skin integrity, but a chronic failure to heal results in compromised tissue function and increased morbidity. To address this, we have used an integrated approach, using nanobiotechnology to augment the rate of wound reepithelialization by combining self-assembling peptide (SAP) nanofiber scaffold and Epidermal Growth Factor (EGF). This SAP bioscaffold was tested in a bioengineered Human Skin Equivalent (HSE) tissue model that enabled wound reepithelialization to be monitored in a tissue that recapitulates molecular and cellular mechanisms of repair known to occur in human skin. We found that SAP underwent molecular self-assembly to form unique 3D structures that stably covered the surface of the wound, suggesting that this scaffold may serve as a viable wound dressing. We measured the rates of release of EGF from the SAP scaffold and determined that EGF was only released when the scaffold was in direct contact with the HSE. By measuring the length of the epithelial tongue during wound reepithelialization, we found that SAP scaffolds containing EGF accelerated the rate of wound coverage by 5 fold when compared to controls without scaffolds and by 3.5 fold when compared to the scaffold without EGF. In conclusion, our experiments demonstrated that biomaterials composed of a biofunctionalized peptidic scaffold have many properties that are well-suited for the treatment of cutaneous wounds including wound coverage, functionalization with bioactive molecules, localized growth factor release and activation of wound repair

    Development and Implementation of a Registry of Patients Attending Multidisciplinary Pain Treatment Clinics: The Quebec Pain Registry

    Get PDF
    The Quebec Pain Registry (QPR) is a large research database of patients suffering from various chronic pain (CP) syndromes who were referred to one of five tertiary care centres in the province of Quebec (Canada). Patients were monitored using common demographics, identical clinical descriptors, and uniform validated outcomes. This paper describes the development, implementation, and research potential of the QPR. Between 2008 and 2013, 6902 patients were enrolled in the QPR, and data were collected prior to their first visit at the pain clinic and six months later. More than 90% of them (mean age ± SD: 52.76 ± 4.60, females: 59.1%) consented that their QPR data be used for research purposes. The results suggest that, compared to patients with serious chronic medical disorders, CP patients referred to tertiary care clinics are more severely impaired in multiple domains including emotional and physical functioning. The QPR is also a powerful and comprehensive tool for conducting research in a “real-world” context with 27 observational studies and satellite research projects which have been completed or are underway. It contains data on the clinical evolution of thousands of patients and provides the opportunity of answering important research questions on various aspects of CP (or specific pain syndromes) and its management

    Expression of G protein-coupled receptors and related proteins in HEK293, AtT20, BV2, and N18 cell lines as revealed by microarray analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>G protein coupled receptors (GPCRs) are one of the most widely studied gene superfamilies. Thousands of GPCR research studies have utilized heterologous expression systems such as human embryonic kidney cells (HEK293). Though often treated as 'blank slates', these cell lines nevertheless endogenously express GPCRs and related signaling proteins. The outcome of a given GPCR study can be profoundly influenced by this largely unknown complement of receptors and/or signaling proteins. Little easily accessible information exists that describes the expression profiles of the GPCRs in cell lines. What is accessible is often limited in scope - of the hundreds of GPCRs and related proteins, one is unlikely to find information on expression of more than a dozen proteins in a given cell line. Microarray technology has allowed rapid analysis of mRNA levels of thousands of candidate genes, but though often publicly available, the results can be difficult to efficiently access or even to interpret.</p> <p>Results</p> <p>To bridge this gap, we have used microarrays to measure the mRNA levels of a comprehensive profile of non-chemosensory GPCRs and over a hundred GPCR signaling related gene products in four cell lines frequently used for GPCR research: HEK293, AtT20, BV2, and N18.</p> <p>Conclusions</p> <p>This study provides researchers an easily accessible mRNA profile of the endogenous signaling repertoire that these four cell lines possess. This will assist in choosing the most appropriate cell line for studying GPCRs and related signaling proteins. It also provides a better understanding of the potential interactions between GPCRs and those signaling proteins.</p

    Clinical spectrum of MTOR-related hypomelanosis of Ito with neurodevelopmental abnormalities

    Get PDF
    PURPOSE: Hypomelanosis of Ito (HI) is a skin marker of somatic mosaicism. Mosaic MTOR pathogenic variants have been reported in HI with brain overgrowth. We sought to delineate further the pigmentary skin phenotype and clinical spectrum of neurodevelopmental manifestations of MTOR-related HI. METHODS: From two cohorts totaling 71 patients with pigmentary mosaicism, we identified 14 patients with Blaschko-linear and one with flag-like pigmentation abnormalities, psychomotor impairment or seizures, and a postzygotic MTOR variant in skin. Patient records, including brain magnetic resonance image (MRI) were reviewed. Immunostaining (n = 3) for melanocyte markers and ultrastructural studies (n = 2) were performed on skin biopsies. RESULTS: MTOR variants were present in skin, but absent from blood in half of cases. In a patient (p.[Glu2419Lys] variant), phosphorylation of p70S6K was constitutively increased. In hypopigmented skin of two patients, we found a decrease in stage 4 melanosomes in melanocytes and keratinocytes. Most patients (80%) had macrocephaly or (hemi)megalencephaly on MRI. CONCLUSION: MTOR-related HI is a recognizable neurocutaneous phenotype of patterned dyspigmentation, epilepsy, intellectual deficiency, and brain overgrowth, and a distinct subtype of hypomelanosis related to somatic mosaicism. Hypopigmentation may be due to a defect in melanogenesis, through mTORC1 activation, similar to hypochromic patches in tuberous sclerosis complex

    Persistent changes in spinal cord gene expression after recovery from inflammatory hyperalgesia: A preliminary study on pain memory

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies found that rats subjected to carrageenan injection develop hyperalgesia, and despite complete recovery in several days, they continue to have an enhanced hyperalgesic response to a new noxious challenge for more than 28d. The study's aim was to identify candidate genes that have a role in the formation of the long-term hyperalgesia-related imprint in the spinal cord. This objective was undertaken with the understanding that the long-lasting imprint of acute pain in the central nervous system may contribute to the transition of acute pain to chronicity.</p> <p>Results</p> <p>To analyze changes in gene expression when carrageenan-induced hyperalgesia has disappeared but propensity for the enhanced hyperalgesic response is still present, we determined the gene expression profile using oligo microarray in the lumbar part of the spinal cord in three groups of rats: 28d after carrageenan injection, 24h after injection (the peak of inflammation), and with no injection (control group). Out of 17,000 annotated genes, 356 were found to be differentially expressed compared with the control group at 28d, and 329 at 24h after carrageenan injection (both groups at p < 0.01). Among differentially expressed genes, 67 (39 in 28d group) were identified as being part of pain-related pathways, altered in different models of pain, or interacting with proteins involved in pain-related pathways. Using gene ontology (GO) classification, we have identified 3 functional classes deserving attention for possible association with pain memory: They are related to cell-to-cell interaction, synaptogenesis, and neurogenesis.</p> <p>Conclusion</p> <p>Despite recovery from inflammatory hyperalgesia, persistent changes in spinal cord gene expression may underlie the propensity for the enhanced hyperalgesic response. We suggest that lasting changes in expression of genes involved in the formation of new synapses and neurogenesis may contribute to the transition of acute pain to chronicity.</p

    Achievable rates for full-duplex massive MIMO systems with low-resolution ADCs/DACs under imperfect CSI environment

    Get PDF
    We investigate the uplink and downlink achievable rates of full-duplex (FD) massive multi-input multi-output (MIMO) systems with low-resolution analog-digital converters/digital-to-analog converters (ADCs/DACs), where maximum ratio combining/maximum ratio transmission (MRC/MRT) processing are adopted and imperfect channel state information (CSI) is assumed. In this paper, the quantization noise is encapsulated as an additive quantization noise model (AQNM). Then, employing the minimum mean-square error (MMSE) channel estimator, approximate expressions of the uplink and downlink achievable rates are derived, based on the analysis of the quantization error, loop interference (LI), and the inter-user interference (IUI). It is shown that the interference and noise can be eliminated by applying power scaling law properly and increasing the number of antennas. Moreover, given the number of antennas, it is found that the uplink and downlink approximate achievable rates will converge to a constant when the number of quantization bit tends to infinity. Therefore, the system performance that can be improved by increasing ADC/DAC resolution is limited, implying that it is reasonable to adopt low-resolution ADCs/DACs in FD massive MIMO systems

    The modular systems biology approach to investigate the control of apoptosis in Alzheimer's disease neurodegeneration

    Get PDF
    Apoptosis is a programmed cell death that plays a critical role during the development of the nervous system and in many chronic neurodegenerative diseases, including Alzheimer's disease (AD). This pathology, characterized by a progressive degeneration of cholinergic function resulting in a remarkable cognitive decline, is the most common form of dementia with high social and economic impact. Current therapies of AD are only symptomatic, therefore the need to elucidate the mechanisms underlying the onset and progression of the disease is surely needed in order to develop effective pharmacological therapies. Because of its pivotal role in neuronal cell death, apoptosis has been considered one of the most appealing therapeutic targets, however, due to the complexity of the molecular mechanisms involving the various triggering events and the many signaling cascades leading to cell death, a comprehensive understanding of this process is still lacking. Modular systems biology is a very effective strategy in organizing information about complex biological processes and deriving modular and mathematical models that greatly simplify the identification of key steps of a given process. This review aims at describing the main steps underlying the strategy of modular systems biology and briefly summarizes how this approach has been successfully applied for cell cycle studies. Moreover, after giving an overview of the many molecular mechanisms underlying apoptosis in AD, we present both a modular and a molecular model of neuronal apoptosis that suggest new insights on neuroprotection for this disease
    corecore