152 research outputs found

    Genetic support for the causal role of insulin in coronary heart disease

    Get PDF
    Epidemiological studies have identified several traits associated with CHD, but few of these have been shown to be causal risk factors and thus suitable targets for treatment. Our aim was to evaluate the causal role of a large set of known CHD risk factors using single-nucleotide polymorphisms (SNPs) as instrumental variables.Peer reviewe

    Fine-Scale Genetic Structure in Finland

    Get PDF
    Coupling dense genotype data with new computational methods offers unprecedented opportunities for individual-level ancestry estimation once geographically precisely defined reference data sets become available. We study such a reference data set for Finland containing 2376 such individuals from the FINRISK Study survey of 1997 both of whose parents were born close to each other. This sampling strategy focuses on the population structure present in Finland before the 1950s. By using the recent haplotype-based methods ChromoPainter (CP) and FineSTRUCTURE (FS) we reveal a highly geographically clustered genetic structure in Finland and report its connections to the settlement history as well as to the current dialectal regions of the Finnish language. The main genetic division within Finland shows striking concordance with the 1323 borderline of the treaty of Noteborg. In general, we detect genetic substructure throughout the country, which reflects stronger regional genetic differences in Finland compared to, for example, the UK, which in a similar analysis was dominated by a single unstructured population. We expect that similar population genetic reference data sets will become available for many more populations in the near future with important applications, for example, in forensic genetics and in genetic association studies. With this in mind, we report those extensions of the CP + FS approach that we found most useful in our analyses of the Finnish data.Peer reviewe

    Targeted Resequencing of the Pericentromere of Chromosome 2 Linked to Constitutional Delay of Growth and Puberty

    Get PDF
    Constitutional delay of growth and puberty (CDGP) is the most common cause of pubertal delay. CDGP is defined as the proportion of the normal population who experience pubertal onset at least 2 SD later than the population mean, representing 2.3% of all adolescents. While adolescents with CDGP spontaneously enter puberty, they are at risk for short stature, decreased bone mineral density, and psychosocial problems. Genetic factors contribute heavily to the timing of puberty, but the vast majority of CDGP cases remain biologically unexplained, and there is no definitive test to distinguish CDGP from pathological absence of puberty during adolescence. Recently, we published a study identifying significant linkage between a locus at the pericentromeric region of chromosome 2 (chr 2) and CDGP in Finnish families. To investigate this region for causal variation, we sequenced chr 2 between the genomic coordinates of 79-124 Mb (genome build GRCh37) in the proband and affected parent of the 13 families contributing most to this linkage signal. One gene, DNAH6, harbored 6 protein-altering low-frequency variants (<6% in the Finnish population) in 10 of the CDGP probands. We sequenced an additional 135 unrelated Finnish CDGP subjects and utilized the unique Sequencing Initiative Suomi (SISu) population reference exome set to show that while 5 of these variants were present in the CDGP set, they were also present in the Finnish population at similar frequencies. Additional variants in the targeted region could not be prioritized for follow-up, possibly due to gaps in sequencing coverage or lack of functional knowledge of non-genic genomic regions. Thus, despite having a well-characterized sample collection from a genetically homogeneous population with a large population-based reference sequence dataset, we were unable to pinpoint variation in the linked region predisposing delayed puberty. This study highlights the difficulties of detecting genetic variants under linkage regions for complex traits and suggests that advancements in annotation of gene function and regulatory regions of the genome will be critical for solving the genetic background of complex phenotypes like CDGP.Peer reviewe

    MicroRNA-192*impairs adipocyte triglyceride storage

    Get PDF
    We investigated the expression of miR-192* (miR-192-3p) in the visceral adipose tissue (VAT) of obese subjects and its function in cultured human adipocytes. This miRNA is a 3' arm derived from the same pre-miRNA as miR-192 (miR-192-5p) implicated in type 2 diabetes, liver disease and cancers, and is predicted to target key genes in lipid metabolism. In morbidly obese subjects undergoing bariatric surgery preceded by a very low calorie diet, miR-192* in VAT correlated negatively (r = -0.387; p = 0.046) with serum triglyceride (TG) and positively with high-density lipoprotein (HDL) concentration (r = 0.396; p = 0.041). In a less obese patient cohort, the miRNA correlated negatively with the body mass index (r = -0.537; p = 0.026). To characterize the function of miR-192*, we overexpressed it in cultured adipocytes and analyzed the expression of adipogenic differentiation markers as well as cellular TG content. Reduced TG and expression of the adipocyte marker proteins aP2 (adipocyte protein 2) and perilipin 1 were observed. The function of miR-192* was further investigated by transcriptomic profiling of adipocytes expressing this miRNA, revealing impacts on key lipogenic genes. A number of the mRNA alterations were validated by qPCR. Western analysis confirmed a marked reduction of the lipogenic enzyme SCD (stearoyl coenzyme A desaturase-1), the fatty aldehyde dehydrogenase ALDH3A2 (aldehyde dehydrogenase 3 family member A2) and the high-density lipoprotein receptor SCARB1 (scavenger receptor B, type I). SCD and ALDH3A2 were demonstrated to be direct targets of miR-192*. To conclude, the present data identify miR-192* as a novel controller of adipocyte differentiation and lipid homeostasis. (C) 2016 Elsevier B.V. All rights reserved.Peer reviewe

    Genome-wide time-to-event analysis on smoking progression stages in a family-based study

    Get PDF
    Background: Various pivotal stages in smoking behavior can be identified, including initiation, conversion from experimenting to established use, development of tolerance, and cessation. Previous studies have shown high heritability for age of smoking initiation and cessation; however, time-to-event genome-wide association studies aiming to identify underpinning genes that accelerate or delay these transitions are missing to date. Methods: We investigated which single nucleotide polymorphisms (SNPs) across the whole genome contribute to the hazard ratio of transition between different stages of smoking behavior by performing time-to-event analyses within a large Finnish twin family cohort (N = 1962), and further conducted mediation analyses of plausible intermediate traits for significant SNPs. Results: Genome-wide significant signals were detected for three of the four transitions: (1) for smoking cessation on 10p14 (P = 4.47e-08 for rs72779075 flanked by RP11-575N15 and GATA3), (2) for tolerance on 11p13 (P = 1.29e-08 for rs11031684 in RP1-65P5.1), mediated by smoking quantity, and on 9q34.12 (P = 3.81e-08 for rs2304808 in FUBP3), independent of smoking quantity, and (3) for smoking initiation on 19q13.33 (P = 3.37e-08 for rs73050610 flanked by TRPM4 and SLC6A16) in analysis adjusted for first time sensations. Although our top SNPs did not replicate, another SNP in the TRPM4-SLC6A16 gene region showed statistically significant association after region-based multiple testing correction in an independent Australian twin family sample. Conclusion: Our results suggest that the functional effect of the TRPM4-SLC6A16 gene region deserves further investigation, and that complex neurotransmitter networks including dopamine and glutamate may play a critical role in smoking initiation. Moreover, comparison of these results implies that genetic contributions to the complex smoking behavioral phenotypes vary among the transitions.Peer reviewe

    The Contribution of GWAS Loci in Familial Dyslipidemias

    Get PDF
    Familial combined hyperlipidemia (FCH) is a complex and common familial dyslipidemia characterized by elevated total cholesterol and/or triglyceride levels with over five-fold risk of coronary heart disease. The genetic architecture and contribution of rare Mendelian and common variants to FCH susceptibility is unknown. In 53 Finnish FCH families, we genotyped and imputed nine million variants in 715 family members with DNA available. We studied the enrichment of variants previously implicated with monogenic dyslipidemias and/or lipid levels in the general population by comparing allele frequencies between the FCH families and population samples. We also constructed weighted polygenic scores using 212 lipid-associated SNPs and estimated the relative contributions of Mendelian variants and polygenic scores to the risk of FCH in the families. We identified, across the whole allele frequency spectrum, an enrichment of variants known to elevate, and a deficiency of variants known to lower LDL-C and/or TG levels among both probands and affected FCH individuals. The score based on TG associated SNPs was particularly high among affected individuals compared to non-affected family members. Out of 234 affected FCH individuals across the families, seven (3%) carried Mendelian variants and 83 (35%) showed high accumulation of either known LDL-C or TG elevating variants by having either polygenic score over the 90th percentile in the population. The positive predictive value of high score was much higher for affected FCH individuals than for similar sporadic cases in the population. FCH is highly polygenic, supporting the hypothesis that variants across the whole allele frequency spectrum contribute to this complex familial trait. Polygenic SNP panels improve identification of individuals affected with FCH, but their clinical utility remains to be defined.Peer reviewe

    Genetic Variants on Chromosome 1p13.3 Are Associated with Non-ST Elevation Myocardial Infarction and the Expression of DRAM2 in the Finnish Population

    Get PDF
    Myocardial infarction (MI) is divided into either ST elevation MI (STEMI) or non-ST elevation MI (NSTEMI), differing in a number of clinical characteristics. We sought to identify genetic variants conferring risk to NSTEMI or STEMI by conducting a genome-wide association study (GWAS) of MI stratified into NSTEMI and STEMI in a consecutive sample of 1,579 acute MI cases with 1,576 controls. Subsequently, we followed the results in an independent population-based sample of 562 cases and 566 controls, a partially independent prospective cohort (N = 16,627 with 163 incident NSTEMI cases), and examined the effect of disease-associated variants on gene expression in 513 healthy participants. Genetic variants on chromosome 1p13.3 near the damage-regulated autophagy modulator 2 gene DRAM2 associated with NSTEMI (rs656843; odds ratio 1.57, P = 3.11 x 10(-10)) in the case-control analysis with a consistent but not statistically significant effect in the prospective cohort (rs656843; hazard ratio 1.13, P = 0.43). These variants were not associated with STEMI (rs656843; odds ratio, 1.11, P = 0.20; hazard ratio 0.97, P = 0.87), appearing to have a pronounced effect on NSTEMI risk. A majority of the variants at 1p13.3 associated with NSTEMI were also associated with the expression level of DRAM2 in blood leukocytes of healthy controls (top-ranked variant rs325927, P = 1.50 x 10(-12)). The results suggest that genetic factors may in part influence whether coronary artery disease results in NSTEMI rather than STEMI.Peer reviewe
    • …
    corecore