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ABSTRACT

Motivation: A typical genome-wide association study searches for

associations between single nucleotide polymorphisms (SNPs) and a

univariate phenotype. However, there is a growing interest to investi-

gate associations between genomics data and multivariate pheno-

types, for example, in gene expression or metabolomics studies. A

common approach is to perform a univariate test between each geno-

type–phenotype pair, and then to apply a stringent significance cutoff

to account for the large number of tests performed. However, this

approach has limited ability to uncover dependencies involving mul-

tiple variables. Another trend in the current genetics is the investigation

of the impact of rare variants on the phenotype, where the standard

methods often fail owing to lack of power when the minor allele is

present in only a limited number of individuals.

Results: We propose a new statistical approach based on Bayesian

reduced rank regression to assess the impact of multiple SNPs on a

high-dimensional phenotype. Because of the method’s ability to com-

bine information over multiple SNPs and phenotypes, it is particularly

suitable for detecting associations involving rare variants. We demon-

strate the potential of our method and compare it with alternatives

using the Northern Finland Birth Cohort with 4702 individuals, for

whom genome-wide SNP data along with lipoprotein profiles compris-

ing 74 traits are available. We discovered two genes (XRCC4 and

MTHFD2L) without previously reported associations, which replicated

in a combined analysis of two additional cohorts: 2390 individuals from

the Cardiovascular Risk in Young Finns study and 3659 individuals

from the FINRISK study.

Availability and implementation: R-code freely available for down-

load at http://users.ics.aalto.fi/pemartti/gene_metabolome/.

Contact: samuli.ripatti@helsinki.fi; samuel.kaski@aalto.fi

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Concentrations of human metabolites are associated with risk of

many common diseases; for example, low- and high-density lipo-

protein cholesterol (LDL and HDL) levels are associated with

coronary artery disease. For this reason, human metabolism has

been under intensive investigation and over the past few years

several genome-wide association studies have successfully un-

covered a part of its genetic basis (Kettunen et al., 2012;*To whom correspondence should be addressed.
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Sabatti et al., 2008; Suhre et al., 2011; Teslovich et al., 2010). For

example, a large meta-analysis (Teslovich et al., 2010) identified

95 loci influencing the levels of total cholesterol, LDL, HDL and

triglycerides. More recent studies used finer subclassifications of

metabolites and discovered dozens of novel loci (Kettunen et al.,

2012; Suhre et al., 2011). Despite these advances, the variance

explained by all reported single nucleotide polymorphisms

(SNPs) falls far below the suggested heritability of the common

metabolites, as estimated either from twin studies (Kettunen

et al., 2012) or from more distantly related individuals

(Vattikuti et al., 2012). This motivates us to develop new

approaches for association testing that could better use all infor-

mation available to us.
The present-day cohort studies often come with a rich set of

phenotypic features. Examples in addition to metabolomics

(Kettunen et al., 2012; Soininen et al., 2009; Suhre et al., 2011)

include studies of gene expression (Ackermann et al., 2013) and

3D-facial imaging (Hammond and Suttie, 2012). As a conse-

quence, we need statistical methods that increase the power to

uncover genotype–phenotype dependencies by combining infor-

mation over several related phenotypes (Ferreira and Purcell,

2009; Inouye et al., 2012; O’Reilly et al., 2012). The underlying

idea is that if a genetic variant affects a trait, then it is likely to

affect other traits that are related to the first one and, by testing

for association with the two traits jointly, power may be

increased. This reasoning can be taken a step further by testing

all traits in high-dimensional omics data simultaneously, for ex-

ample, all metabolites in comprehensive metabolomic profiles. A

comparison of different statistical methods available for joint

testing of complete metabolomics profiles was recently con-

ducted (Marttinen et al., 2013).

Besides testing several phenotypes simultaneously, the ability

to detect certain kinds of associations may be boosted by com-

bining statistical evidence over several SNPs. Usually this is done

in a supervised manner, such that SNPs related by location or

function, for example, are tested simultaneously. Combining

information over multiple SNPs is particularly crucial with rare

variants, i.e. SNPs where the minor allele is present in a small

proportion of the population. Testing such SNPs individually is

unlikely to yield significant findings because of limited power.

Most approaches for handling rare variants are based on collap-

sing several rare SNPs into a single variable (Bansal et al., 2010).

For example, one can simply collapse several rare variants into a

single indicator, telling whether any of the rare variants is present

in the individual (Morgenthaler and Thilly, 2007) or to count the

number of rare variants present in the individual (Morris and

Zeggini, 2010). The problem with the collapsing methods is the

implicit assumption that the effects are in the same (or a prede-

fined) direction. A more sophisticated variance component

method avoiding this assumption is able to investigate the

impact of several rare variants on a univariate trait (Wu et al.,

2011).
Even if there exists a large number of methods for analyzing

rare variants, none of those has been tailored for multivariate

phenotypes. On the other hand, standard methods for multivari-

ate phenotypes (Ferreira and Purcell, 2009) have not been thor-

oughly investigated in the context of rare variants, and we will

see later in the text that severe overfitting may occur.

In summary, methods for dealing with rare variants in the con-

text of multivariate phenotypes are clearly lacking.
In this article, we derive a novel formulation of the Bayesian

reduced rank regression model (Geweke, 1996) to detect multi-

variate associations between predefined groups of SNPs and a

high-dimensional phenotype. In particular, our approach is suit-

able for analyzing both common and rare variants. Our formu-

lation incorporates prior knowledge about effect sizes to increase

the power to detect associations. Furthermore, it is capable of

correcting for the number of SNPs considered, which is import-

ant when testing a large number of SNP groups of different sizes.

We validate our method by assessing associations between SNPs

in all human genes, one gene at a time, and metabolic profiles

comprising fine-scale lipoprotein measurements for 4702 individ-

uals from the Northern Finland Birth Cohort 1966 (Rantakallio,

1969; Sabatti et al., 2008). Among the top-scoring genes without

known associations to the traits studied, two genes (XRCC4 and

MTHFD2L) replicated in a combined analysis of 2390 individ-

uals from the Cardiovascular Risk in Young Finns study (YFS;

Raitakari et al., 2008) and 3659 individuals from the FINRISK

study (Vartiainen et al., 2010). Additional analyses of the same

data confirmed that alternative methods discovered only one of

these associations and did not identify any further associations

that were not known before.

2 METHODS

2.1 Model

To build our model, we assume that the phenotypes may be affected by

three kinds of variables, (i) known factors, such as age, sex or population

structure, (ii) unknown factors, such as experimental conditions and other

batch effects, and (iii) SNPs under consideration, as schematically pre-

sented in Figure 1. In contrast to standard regression, where each SNP–

phenotype pair has a parameter representing the effect of the SNP on the

phenotype, here we assume that a combination of several SNPs is influ-

encing several phenotypes through some unknown factors. This assump-

tion is compactly expressed in terms of the reduced rank regression,

where the SNPs are first projected onto a low-dimensional subspace,

and the projections are then used as regressors when predicting the

phenotypes. The reduced rank regression formulation immediately

implies some structural assumptions deemed sensible in the current set-

ting: first, if a SNP has an effect on a phenotype, then the SNP is likely to

have an effect on other phenotypes; second, if a phenotype is affected by a

SNP, then the phenotype is more likely to be affected by other related

SNPs as well.

Let N denote the number of individuals, S the number of SNPs, P the

number of phenotypes and C the number of other covariates. Formally,

we consider the Bayesian reduced rank regression model

Y ¼ X��þ ZAþH�T þ E ð1Þ

where YN�P contains the phenotypes, XN�S contains the SNPs, �S�K1

and �K1�P represent a low-rank approximation for the regression coeffi-

cient matrix � ¼ ��, ZN�C represents other covariates with the corres-

ponding coefficient matrix AC�P, HN�K2
contains hidden confounding

factors with the corresponding coefficient matrix �P�K2
and

EN�P ¼ ½e1, . . . , eN�
T, with ei � Nð0,�Þ, where � ¼ diagð�21 , . . . , �2PÞ.

Note that by integrating over the hidden factors H, the model is equiva-

lent to

yi � Nð�Txi þ ATzi,��T þ�Þ, i ¼ 1, . . . ,N ð2Þ
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where it is assumed that the factors have independent standard normal

prior distributions. Therefore, we see that having the latent variable part

H�T in the model corresponds to assuming a low-rank approximation to

the full covariance matrix, which is important when analyzing high-

dimensional datasets.

For computational reasons, we restrict the rank of the regression

model, K1, to unity in our genome-wide analysis (w.l.o.g. in the detection

task, see below) and show results with K1 ¼ 1, 2, 3 for a few representa-

tive examples. However, here we present a general infinite-dimensional

framework available in our implementation, which does not necessitate

the selection of a fixed rank. In general, to use the Bayesian reduced rank

regression model, the rank of the model, K1, and the rank of the low-rank

approximation for the covariance matrix, K2, must be selected. A recent

Bayesian infinite sparse factor analysis model (Bhattacharya and

Dunson, 2011) circumvents the selection of a fixed rank for K2 by assum-

ing in principle an infinite number of columns in the � matrix; however,

the columns shrink progressively such that only the first ranks are influ-

ential in practice. We assume this prior formulation for our noise model

H�T þ E. We exploit the idea further by allowing also the rank K1 to be

infinite in principle, and enforcing the low-rank nature by shrinking the

columns of � and the rows of � increasingly as the column/row index

grows. In practice, one needs to specify upper bounds for K1 and K2. We

select the upper bound for K2 using the adaptive procedure of

Bhattacharya and Dunson (2011), and we have implemented an analo-

gous method for learning the upper bound for K1. In practice, we wanted

to minimize the model complexity to maximize the power to detect asso-

ciations and speed up the computations. Therefore, we decided to run the

genome-wide analysis (see Section 3.1) using a fixed rank K1 ¼ 1. The

model with K1 ¼ 1 is sufficient for our purposes of detecting whether a

gene is unrelated to the phenotypes (in which case, rank zero would

already be sufficient), although for prediction a higher rank might be

more suitable. We experimented with a selected set of known genes

with upper bounds 2 and 3 (see below) and noticed that the effect of

increasing the upper bound from unity had only a small impact on the

amount of variation that is explained by the model. From the biological

perspective, this means that the influence of a gene on the phenotypes can

mostly be described in terms of a single latent factor mediating the effect.

A detailed model description is given in Supplementary Section 1.

The model is related to many published methods, and a thorough

comparison can be found in Supplementary Section 2. Correction for

unknown factors has recently been considered with the standard regres-

sion model, typically for just one SNP at a time (Fusi et al., 2012; Stegle

et al., 2010). The difference to the original Bayesian reduced rank regres-

sion formulation (Geweke, 1996) is that our model uses low-rank ap-

proximation to the covariance matrix, making it more suitable for

high-dimensional phenotypes, and informative prior distributions accom-

modating problem-specific knowledge. Furthermore, we use the model in

a new way, as described in the subsequent sections. The Bayesian infinite

sparse factor analysis model has been used for high-dimensional data

(Bhattacharya and Dunson, 2011); here, we use it to represent the multi-

variate noise. Canonical correlation analysis (CCA) is a classical tool for

modeling multivariate dependencies that have recently been introduced in

the association study context (Ferreira and Purcell, 2009; Hotelling,

1936). Sparse CCA (Parkhomenko et al., 2009; Waaijenborg et al.,

2008; Witten and Tibshirani, 2009) is more suitable to high-dimensional

datasets; however, introducing prior distributions for CCA that would be

intuitive in the association study context does not seem straightforward.

2.2 Proportion of total variation explained

A commonly used measure of the impact of multiple SNPs, say

x1, . . . , xS, on a univariate trait y is the proportion of variance explained

(PVE) by the SNPs:

PVE ¼ 1�
Varðy�

PS
i¼1 âixiÞ

VarðyÞ

¼
Varð

PS
i¼1 âixiÞ

VarðyÞ
:

Here,
PS

i¼1 âixi is a linear prediction for the phenotype y, given the SNPs.

Analogously, as a measure of the overall impact of multiple SNPs on a

high-dimensional phenotype, we propose to use the proportion of total

variation of the phenotypes explained (PTVE) by the model, namely

PTVE ¼
TrðCovðŶÞÞ

TrðCovðYÞÞ
ð3Þ

where Ŷ is a prediction for a high-dimensional phenotype Y from the

model and Tr denotes the trace, i.e. the sum of the diagonal elements of

the matrix. In (3) and in general, the total variation of a multivariate

random variable is defined as the trace of the covariance matrix, i.e.the

sum of the variances of the individual variables. Therefore, PTVE meas-

ures the joint impact of the SNPs on several phenotypes and hence

is expected to yield high scores to such dependencies in which many

phenotypes are affected by the SNPs, even if none of the effects is large

by itself.

In the Bayesian statistical framework, the inferences are based on pos-

terior probability distributions of the quantities of interest (Gelman et al.,

2004). With the Bayesian reduced rank regression model, samples from

the posterior distribution of the PTVE can be obtained from

PTVEðiÞ ¼
Tr Cov X�ðiÞ�ðiÞ

� �� �

Tr Cov Yð Þð Þ
ð4Þ

where �ðiÞ and �ðiÞ are samples from the posterior distribution of the

parameters � and �. It is similarly straightforward to estimate the pos-

terior distribution for the proportion of variation explained by the rare

Y XψΓ ZA H T E,

Y X Z A H T E

A

B

Fig. 1. Graphical illustration of the model. (A) The variables and depen-

dencies between them. The phenotypes Y are assumed to be affected by

known factors, such as age or sex, unknown factors, such as batch effects

caused by varying experimental conditions, and the SNPs. The influence

of the SNPs is mediated by unknown combinations of the original SNPs,

represented by black squares. (B) The same model using matrix notation.

Matrices containing the observed variables, Y (the phenotypes), X (the

SNPs) and Z (known factors), are blue. The regression coefficient matri-

ces are red. Note that the coefficient matrix for the SNP effects is written

as a product of two matrices, � and �, corresponding to a low-rank

approximation to an unconstrained coefficient matrix. The brown matri-

ces comprise unobserved variables, H (unknown factors) and E (noise

terms)
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variants, by dividing the variation of the prediction into two components,

one corresponding to the rare variants, the other to the common variants.

The score obtained in this way is referred to as PTVE-rare in the sequel

and its exact definition is given in Supplementary Section 3. In practice,

we approximate the posterior distribution by using a mode-based point

estimate for one of the parameters, �, and estimating the joint distribu-

tion of the other parameters using an Markov chain Monte Carlo

(MCMC) algorithm, as described thoroughly in Supplementary

Sections 4 and 5.

2.3 Informative prior

In the Bayesian analysis, external background knowledge may be incor-

porated in the statistical analysis through prior probability distributions.

As our analysis is focused on estimating the posterior distribution of

PTVE, a sensible prior is obtained by making the prior distribution of

the PTVE represent our true beliefs about this quantity. The prior distri-

bution of the PTVE appears not to be available in a closed form; how-

ever, in Supplementary Section 6, we derive results that show how the

distribution of the mean of the PTVE, �PTVE, depends on model hyper-

parameters. Using these results, we set the prior distributions to satisfy

the following properties:

Medianð�PTVEÞ ¼ 10�6 ð5Þ

and

Pð�PTVE40:001Þ ¼ 0:01 ð6Þ

Equation (5) means that the prior median of �PTVE is close to zero, as

we expect most of the genes to be unrelated to the phenotypes. Equation

(6) says that with a small probability, here equal to 0.01, the gene may

explain40.1% of the total variation, a value deemed resonable based on

the background knowledge. The resulting prior distribution for the PTVE

is obtained by integrating over the distribtion of �PTVE, and we used

Monte Carlo simulation to investigate the distribution. Figure 2 shows

PTVE values sampled from the prior distribution. The following desirable

characteristics can be seen: first, a peak close to zero, shrinking the coef-

ficients when no effect is present; second, a long tail, corresponding to the

genes with a non-negligible impact on the phenotypes, without imposing

strong beliefs about the actual size of these non-zero effects.

Another important property that follows from using the informative

prior is that the number of SNPs under consideration can be accounted

for. Detailed examination of Corollary 1 in Supplementary Section 6

reveals that with fixed hyperparameters, the expected PTVE is propor-

tional to
PS

i¼1 VarðxiÞ, i.e. the total variation of the SNPs. Roughly, this

means that if the number of SNPs doubles, the expected PTVE doubles as

well, if the hyperparameters are kept fixed. Using the Corollaries 1 and 2

in Supplementary Section 6, it is straightforward to modify the hyper-

parameter distributions to assert the prior conditions (5) and (6), implying

in our setting that all genes are expected to explain the same amount of

the variation of the phenotypes, regardless of how many SNPs they

contain.

2.4 Data

As a dataset for detecting associations, we consider a sample of 4702

individuals from the Northern Finland Birth Cohort 1966

(NFBC1966), a birth cohort study of children born in 1966 in the two

northernmost provinces of Finland (Rantakallio, 1969). The blood sam-

ples for the DNA extraction and phenotype data were collected at a

follow-up visit when the participants were 31 years of age. For replica-

tion, we consider two cohorts. The YFS is a population-based prospective

cohort study (Raitakari et al., 2008) conducted in Finland, the purpose of

which was to investigate the levels of cardiovascular risk factors in chil-

dren and adolescents in different parts of the country. The FINRISK

study comprises cross-sectional population surveys that have been carried

out every 5 years since 1972, to assess the risk factors of chronic diseases,

with emphasis on cardiovascular risk factors (Vartiainen et al., 2010). The

individuals analyzed in this study belong to the sample from the year

1997. The blood samples for the two replication cohorts were collected

when the participants were 30–45 and 25–71 years of age, respectively.

The study protocols of all datasets have been approved by the local ethics

committees.

The samples were genotyped with Illumina arrays (Illumina, Inc. San

Diego, CA, USA) and imputed with IMPUTE 2 (Howie et al., 2009,

2011) using a 1000 Genomes Project reference panel (The 1000

Genomes Project Consortium, 2012). Of the resulting good-quality auto-

somal SNPs (info40.4), we extracted SNPs in 24025 human genes by

adding 50kb flanking regions on both sides of the endpoints of the genes

given in NCBI gene database (genome assembly GRCh37.p10, NCBI

annotation 104, November 2012). As a preprocessing step, we reduced

the genotype space within each gene to the most promising 200 SNPs (at

most) that had the highest canonical correlation test score (Ferreira and

Purcell, 2009) with the metabolites; however, to prevent overfitting, the

priors were specified as described above using the unpruned SNP set. In

preliminary experiments, decreasing the number of SNPs in this way from

800 to 200 had no visible effect on the results. Finally, the SNPs were

scaled to have unit variance.

Phenotype data came from the serum NMR metabolomics platform

described earlier (Soininen et al., 2009). As a preprocessing step, the traits

were quantile-normalized to have standard normal distribution.

Individuals with 20% missing values were removed and the remaining

missing values were imputed by sampling them from the multivariate

normal distribution. In this work, we analyzed a subset of 74 lipoprotein

subclass measures (Supplementary Table S3). The empirical correlation

matrix of the traits is shown in Supplementary Figure S1. Linear regres-

sion was used to correct the phenotypes for age, sex and population

structure using 10 principal components (Price et al., 2006).
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Fig. 2. Prior and posterior distributions for the proportion of total vari-

ation explained (PTVE) by the model. The panel on the left shows the

prior distribution imposed on the proportion of total variation of the

phenotypes explained by the SNPs under consideration (here, the SNPs

from the LIPC gene). The median of the prior distribution is located at

�4e-6. The characteristic features of the prior distribution include the

peak at values close to zero, effectively removing noise unless there is

strong evidence about a possible association, and the long tail allowing a

small percentage of genes to explain larger proportions of the phenotype

variation. The rightmost bin on the x-axis contains the total probability

of values exceeding the maximum value on the axis. The panel on the

right shows the posterior distribution of the PTVE for the same SNPs.

Two posterior densities are shown, one showing the distribution for the

original data, the other showing the distribution for data in which the

rows of the phenotype matrix have been permuted. Notice the differing

scales on the x-axes of the two panels
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3 RESULTS

3.1 Genome-wide analysis of NFBC1966 data

We computed the PTVE and PTVE-rare scores for each of the

24 025 human genes in the NFBC1966 data, one gene at a time,

using the Bayesian reduced rank regression. Table 1(a) shows the

top five genes with the highest PTVE scores, all of which are

well-known lipid-associated loci. More generally, all 43 top-scor-

ing genes were located within 1Mb from previously reported

genome-wide significant lipid associations (Kettunen et al.,

2012; Teslovich et al., 2010; The Global Lipids Genetics

Consortium, 2013), and detailed listing of the top genes is

given in Supplementary Table S4. Furthermore, of the top 100

genes, which correspond to �0.2 false discovery rate (FDR) (see

the next section), 73 genes had known associations. Together,

these findings serve as a validation of the method and its

implementation.
To illustrate the effect of the model rank on the results, we

carried out a detailed analysis for three known lipid genes: LIPC,

APOB and PLTP, with rank K1 ¼ 1, 2, 3. The genes were se-

lected such that they were located in different chromosomes

and had dissimilar association profiles [APOB associated most

strongly to VLDL, IDL and LDL, PLTP to HDL and LIPC to

VLDL, IDL and HDL (Tukiainen et al., 2012)]. In addition to

considering the genes separately, we repeated a joint analysis for

all three possible pairwise gene combinations. The results are

shown in Supplementary Figure S2 and are summarized as fol-

lows: (i) the rank of the model had a minor effect on the results

for a single gene, (ii) increasing the rank from K1 ¼ 1 to K1 ¼ 2

increased the variance explained in all joint pairwise analyses,

and the increase was significant in two of the three cases, (iii) a

combination of two genes always had a larger effect than either

gene individually; however, the sum of the individual effects was

slightly larger than the effect of the combination. We attribute

this difference mainly to the stronger shrinkage in the second

than the first genotype component. (iv) The first component of

a joint model was always strongly correlated with the single-gene

model with the larger effect, the second component with the

single-gene model with the smaller effect. This is as expected,

as the prior distribution was designed to identify the strongest

associations using the first genotype component.

To check whether novel associations could be detected by any

method, we carried out a replication experiment with the YFS

and FINRISK datasets for the most promising genes, after

excluding genes located within 1Mb from previously reported

associations. We considered from each method all genes with

FDR 50.4 as promising. For the PTVE-rare score, six genes

were tested, none of which had previously reported associations

to lipids. For the PTVE score, 305 genes had FDR50.4; how-

ever, only 167 were not located close to known associations, and

these 167 genes were selected for replication.
For the purposes of replication, the multivariate dependency

between the multiple SNPs and phenotypes was reduced into a

univariate test by using parameters estimated in the NFBC1966

data to construct univariate genotype and phenotype combin-

ations (see Supplementary Section 7 for further details). Then,

the standard linear model was used to test for positive correlation

between the genotype and phenotype combinations. A pooled

linear regression coefficient combining YFS and FINRISK

datasets was formed using a fixed effect model over the two

datasets (Thompson et al., 2011), and the P-value was obtained

by relating the pooled estimate to its SD. A one-tailed test was

used,as we were only interested in findings in which the effects

were in the same direction in the replication datasets as in the

NFBC1966 data. Bonferroni correction was used to account for

the number of genes tested with each method, such that corrected

Table 1. Summary of results from the genome-wide analysis of the real data

Chr Locus PTVE (SD) Rare P-value Gene rank

PTVE Pairwise S-CCA CCA-single

(a)

15 LIPC 0.01 (5e-04) 0.015 5e-19 1 1 1 132

19 APOC1 0.0046 (3e-04) 0.017 1.4e-26 2 8 18 275

19 PVRL2 0.0045 (1e-04) 0.0015 7e-35 3 9 14 276

2 APOB 0.0044 (3e-04) 0.017 1.1e-17 4 45 41 3244

11 APOA5 0.0043 (2e-04) 0.021 5e-10 5 26 33 2433

(b)

16 SPIRE2a 0.0015 (9e-05) 0.89 0.00091b 5 (rare) 8344 5490 4973

5 XRCC4 0.0024 (2e-04) 0.55 0.0016 6 (rare) 2706 5163 2155

(c)

2 DTNBa 0.0015 (2e-04) 0.15 2.6e-04c 138 4715 338 7652

4 MTHFD2L 0.0015 (2e-04) 0.019 7e-06 163 102 1444 1552

Note: (a) Reference results for genes with five highest PTVE scores. (b) Replicated genes from the PTVE-rare score (of six genes tested for replication). (c) Replicated genes

from the PTVE score (of 167 genes). Five other replicated genes (PPBP, CXCL5, CXCL2, PF4 and CXCL3) are not shown as they were located within 1Mb from

MTHFD2L, which had the strongest effect. Column PTVE (SD) shows the proportion of total variation explained and its SD, rare specifies the proportion of the variation

explained by the gene attributed to the rare variants, P-value specifies the P-value pooled over YFS and FINRISK replication datasets (unless stated otherwise) and the last

four columns specify the ranking of the gene among all genes with different methods. aDenotes genes that replicated significantly in only one of the two replication datasets.
b/cReplication P-value in FINRISK/YFS.
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P-value threshold corresponding to the nominal 0.05 level of

significance was equal to P50:0083 for the six putative novel

genes from PTVE-rare score and P50:00030 for the 167 putative

genes from PTVE score.
We considered a replication significant if the test was nomin-

ally significant (P50.05) in both replication datasets, and the

P-value for the pooled estimate was significant after correcting

for the multiple tests. Information about genes that replicated

significantly is provided in Table 1(b) and (c) and in Figure 3.

One gene with PTVE-rare and six genes with PTVE were de-

tected, corresponding to two independent genes: XRCC4 and

MTHFD2L. MTHFD2L is located within 1Mb from two

SNPs (rs2168889 and rs16850360) associated with ‘metabolic

networks’ containing some lipoprotein traits from our data

(Inouye et al., 2012). However, the top metabolite in the associ-

ations was Albumin, and when we repeated the multivariate test

with the lipoprotein traits considered here, these associations

were no longer genome-wide significant (P¼ 2.5e-4 and

P¼ 6.4e-7). In addition, two genes, SPIRE2 and DTNB, repli-

cated significantly (after the multiple testing correction) in one,

but not in the other replication dataset. Table 1 also presents the

rankings of these genes by alternative methods (see below). We

see that XRCC4, SPIRE2 and DTNB were completely missed by

the other methods. Supplementary Table S1 shows the SNPs

contributing to the reported associations. We see that with

XRCC4, SPIRE2 and DTNB, many SNPs, some of which are

rare, are required to represent the overall association. This ex-

plains why these genes did not receive any signal from the stand-

ard testing with the pairwise linear model. Supplementary Figure

S3 shows graphically how the phenotypes are affected by the

significant genes and the known LIPC gene. We see that in nei-

ther of the new genes is the effect focused on any single trait, but

rather a small effect is seen on many lipoprotein measures. This is

not surprising, as the PTVE score is expected to give high scores

to precisely this kind of association. Supplementary Figure S4

shows the estimated SNP coefficients for the genes and demon-

strates the usefulness of analyzing all SNPs in a gene simultan-

eously to reduce noise resulting from the correlation between the

SNPs. Further background information on these genes is pre-

sented in Supplementary Table S2; however, a more thorough

biological interpretation of the genes remains for future work.

Finally, we repeated a similar analysis with three alternative

methods: (i) exhaustive pairwise search with a linear model,

where the minus logarithm of the smallest pairwise P-value

over all SNPs in the gene and metabolites was taken as the test

score for the gene, (ii) CCA, applied to a single SNP versus all

metabolites at a time as by Ferreira and Purcell (2009) and

Inouye et al. (2012) and (iii) sparse CCA, which was used to

compute the canonical correlation between all SNPs in a gene

and all phenotypes (Parkhomenko et al., 2009). The methods (ii)

and (iii) were found to be the most powerful in a recent com-

parison of approaches for a multivariate metabolomics

Fig. 3. Results for genes with significant replication in both test sets: XRCC4 and MTHFD2L; for reference, the well-known LIPC lipid locus is also

shown. Each panel shows the identified phenotype combination plotted against the genotype combination. The left column shows results in the

NFBC1966 dataset, in which the associations were detected. The center and right columns show results with the YFS and FINRISK datasets, where

coefficient matrices learned with the NFBC1966 data were used to form the variable combinations. The green and red background colorings mark the

individuals with the highest/lowest genotype combination values, and the phenotype values in these extreme groups are investigated in more detail in

Supplementary Figure S3
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phenotype (Marttinen et al., 2013); however, here the SNPs were

not pruned using the minor allele frequency before applying the

methods as by Marttinen et al. (2013) because here the focus is in

the rare variant setting. Similarly to PTVE and PTVE-rare meth-

ods, we tried to replicate the top-scoring genes up to FDR¼ 0.4.

The last column in Table 2 shows the numbers of genes included

in the replication with detailed listings given in Supplementary

Tables S4–S8. The association in MTHFD2L was confirmed to

be genome-wide significant using the standard pairwise linear

regression (SNP rs185567543, trait S.LDL.P, P¼ 2.5e-15,

where the P-value is pooled over all three datasets). All other

replicated associations were located within 1Mb of this or pre-

viously known associations, thus yielding no additional novel

detections.

3.2 Power comparison

To investigate the power of the introduced method and compare

it with alternative methods, we estimated FDR corresponding to

different thresholds d for declaring a gene as detected. FDR es-

timates were obtained by permuting the rows of the phenotype

matrix and analyzing the permuted data in exactly the same way

as the original data (Benjamini and Hochberg, 1995; Storey and

Tibshirani, 2003; Xie et al., 2005). In detail, we computed the

average number of genes in the permuted datasets with scores

exceeding a given threshold d (false-positive rates, FPðdÞ), the

number of genes in the original data with scores exceeding

the same threshold d (total positive rates, TPðdÞ) and considered

the ratio of the two

FDRðdÞ ¼
FPðdÞ

TPðdÞ

Because of computational burden, only one permutation was

used with the Bayesian reduced rank regression. With the other

methods, three permutations were used. Therefore, the FDR es-

timates are approximate, which we consider to be sufficient for

our purposes, especially because the most extreme quantiles are

not considered.

The numbers of genes declared detected with different FDR

thresholds are presented in Table 2, and the overall concordance

of the scores from different methods is shown in Supplementary

Figure S5. In summary, the results show that the method with

which most associations were found was exhaustive pairwise

search and the second-most powerful method was the Bayesian
reduced rank regression with PTVE as the test score. These two
methods also had the highest agreement in scoring genes. CCA

applied to test for association between individual SNPs and the
multivariate phenotype performed badly. These results are some-
what different from what has been reported before by us and

others (Inouye et al., 2012; Marttinen et al., 2013). In particular,
the CCA applied to individual SNPs performed much worse that
the pairwise testing, although previously it has been reported to

have clearly higher power. The explanation is that here we
applied the methods to all SNPs, including the rare variants.
Specifically, the single-SNP-CCA starts to overfit when applied

to rare variants. For example, when we investigated the results
more carefully, we discovered SNPs in which the minor allele was

present in few individuals, and such individuals could be almost
perfectly identified by a seemingly random combination of
phenotypes, leading to a large spurious canonical correlation

test score (or, equivalently, a highly significant P-value).
Bayesian reduced rank regression and sparse CCA were less af-
fected by the overfitting because they exploit ways to control the

complexity of the model, the former using the informative priors,
the latter using the cross-validation.
Combining information over several SNPs using CCA or

related methods has recently been demonstrated to improve
power to detect associations under certain conditions
(Marttinen et al., 2013; Tang and Ferreira, 2012; Zhang et al.,

2011). Here we see that the sparse CCA and also the Bayesian
reduced rank regression, which use multi-SNP information, have
lower power in the genome-wide analysis than the simple pair-

wise testing. The difference from the earlier experiments is that
here the methods are applied to genotype data with a much

higher SNP density, as obtained through careful imputation.
The conclusion is that if the multi-SNP information has already
been used within the imputation protocol, the power to detect

associations cannot, in general, be expected to improve by using
multi-SNP models.
For a more detailed comparison between the Bayesian reduced

rank regression and the exhaustive pairwise testing,
Supplementary Figure S6 shows a Q-Q plot of the scores (both
PTVE and PTVE-rare) against the expected scores that have

been obtained by permutation. The Supplementary Figure S6
also shows genes detectable by the simple exhaustive pairwise
search. Both Q-Q plots, but PTVE in particular, indicate an

excess of large test scores, reflecting the fact that at least some
true associations are detected by the model. We further see that
although with PTVE-rare score fewer genes can be detected than

with PTVE, none of the top-scoring genes from PTVE-rare are
flagged by the pairwise approach, making PTVE-rare an attract-
ive score for mining associations that might be missed by the

standard method.

4 DISCUSSION

We have presented a new statistical method for investigating
associations in Genome-wide association study (GWAS) datasets

with multivariate phenotypes. The method can combine infor-
mation over multiple SNPs, making it particularly suitable for
studying rare variants in the high-dimensional phenotype setting.

For this setup, no methods known to the authors have been

Table 2. Power comparison of the different methods

Method FDR¼ 0 FDR¼ 0.1 FDR¼ 0.2 FDR¼ 0.4 Novel

PTVE 36 55 103 305 167

PTVE-rare 3 3 3 6 6

Pairwise 103 176 243 651 300

CCA, single SNP 7 7 7 11 11

Sparse CCA 37 50 66 117 51

Note: The table shows the numbers of gene-metabolome associations that had false

discovery rate below the specified threshold. The last column shows the number of

putative novel associations within genes with FDR¼ 0.4 after removing the known

associations as described in the main text.
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presented before. Our method is based on estimating the propor-

tion of total variance of the phenotypes that is explained by the

SNPs under consideration. For this purpose, we have derived a

Bayesian formulation of the reduced rank regression model,

which enables us to incorporate our knowledge of the expected

effects sizes in the analysis.
We used the new method to analyze a real GWAS dataset with

a multivariate lipoprotein phenotype. Two novel loci not previ-

ously associated with the phenotype were discovered and repli-

cated in an analysis combining two additional datasets.

Furthermore, two more loci were found that replicated signifi-

cantly in one but not in the other test dataset. Possible reasons

for the lack of success in replicating the findings in both the

datasets include the following: (i) the associations were false posi-

tive in the first place, (ii) the associations involved rare variants

that were not present in sufficient numbers to see the effects, (iii)

the imputation accuracy of the rare variants was not sufficient in

all datasets, (iv) the phenotype data, although preprocessed in

exactly the same way with all the datasets, have not been fully

equivalent. For example, the scaling of the phenotypes during

preprocessing has been done using factors not exactly equal, and

the parameters learned in one data may thus not represent the

effects adequately in another data. Only further studies will help

to distinguish between the alternative explanations.
For doing inference with the model, the current implementa-

tion uses MCMC sampling, the computation time of which is

approximately half an hour per gene on a 2.3GHz processor.

Thus, analyzing all human genes requires a cluster computer to

parallelize the computations over the genes. Analytical approxi-

mations, such as the variational or Laplace approximations,

e.g. Bishop (2006), could be used to speed up the computations

and, based on our experiments with the current method, are

worth doing in the future. Alternative ways to use the model

might also be considered. For example, focusing the analysis

on variants with a predicted function could improve power to

detect associations and lessen the computational burden. As an-

other example, we have used 0.01 as the threshold for defining

the rare variants when computing their impact on the pheno-

types. Results based on different thresholds could readily be ex-

tracted from the output of a single MCMC run and are likely to

highlight different sets of genes.
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