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Abstract

The X chromosome (chrX) represents one potential source for the ‘‘missing heritability’’ for complex phenotypes, which thus
far has remained underanalyzed in genome-wide association studies (GWAS). Here we demonstrate the benefits of including
chrX in GWAS by assessing the contribution of 404,862 chrX SNPs to levels of twelve commonly studied cardiometabolic and
anthropometric traits in 19,697 Finnish and Swedish individuals with replication data on 5,032 additional Finns. By using a
linear mixed model, we estimate that on average 2.6% of the additive genetic variance in these twelve traits is attributable to
chrX, this being in proportion to the number of SNPs in the chromosome. In a chrX-wide association analysis, we identify three
novel loci: two for height (rs182838724 near FGF16/ATRX/MAGT1, joint P-value = 2.7161029, and rs1751138 near ITM2A, P-
value = 3.03610210) and one for fasting insulin (rs139163435 in Xq23, P-value = 5.1861029). Further, we find that effect sizes
for variants near ITM2A, a gene implicated in cartilage development, show evidence for a lack of dosage compensation. This
observation is further supported by a sex-difference in ITM2A expression in whole blood (P-value = 0.00251), and is also in
agreement with a previous report showing ITM2A escapes from X chromosome inactivation (XCI) in the majority of women.
Hence, our results show one of the first links between phenotypic variation in a population sample and an XCI-escaping locus
and pinpoint ITM2A as a potential contributor to the sexual dimorphism in height. In conclusion, our study provides a clear
motivation for including chrX in large-scale genetic studies of complex diseases and traits.
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Introduction

Genome-wide association studies (GWAS) have discovered a

wealth of loci associated with complex phenotypes with almost

5,800 significant associations for more than 500 different

phenotypes reported in the NHGRI GWAS catalog [1] (accessed

August 13, 2013). These GWAS discoveries are, however,

concentrated on the autosomes leaving the sex chromosomes,

especially the relatively large X chromosome (chrX), underrepre-

sented; while chrX contains approximately 5% of genomic DNA,

hence being comparable in size to chromosome 7, and encodes for

more than 1,500 genes, only around 20 unique significantly

associated X-chromosomal loci in total are recorded in the

catalog. For instance, there are hundreds of known autosomal loci

for height, BMI and blood lipids, but only one significant height

locus has been identified in chrX, and this in individuals of African

ancestry, and no X-chromosomal associations for these other

highly polygenic phenotypes have been reported. Nevertheless,

almost 1% of genetic variance in height and BMI has been shown

to be accountable to chrX SNPs [2], demonstrating that common

genetic variation in chrX contributes to complex phenotypes.

A likely explanation for the dearth of association findings in

chrX is that the chromosome is often neglected in GWAS: Wise et

al. recently surveyed all published GWAS from 2010 and 2011

and found that only 33% of these studies had included chrX

analyses [3]. While some association studies have opted for

including chrX, such as recent genetic screens on sex-hormone

binding globulin levels [4] and Grave’s disease [5], removal of

non-autosomal data appears to be a common practice in GWAS

[6,7]. There are many potential reasons for the exclusion of chrX

in GWAS, as outlined by Wise et al [3], a major contributor being

that the analysis pipeline applied for autosomes is not directly

applicable to chrX analyses.

While women carry two copies of chrX, men are hemizygous

for the chromosome. The allele dosages between the sexes are

balanced by random X chromosome inactivation (XCI) that

silences one of the two chromosomes in women, hence requiring

the allele coding for chrX markers to be adjusted accordingly for

the analyses. However, XCI does not evenly cover the whole of

chrX, but approximately 15% of the loci in the chromosome

completely escape from XCI and in further 10% of the sites the

silenced chrX is variably active in women, although the expression

from the inactivated copy of chrX is often lower than from the

active chrX [8]. The incomplete XCI adds another layer of

analytical challenges, yet at the same time it also makes chrX

particularly interesting to study, as the regions of incomplete

dosage compensation are among the genomic contributors to the

differences between gene dosages in men and women. As such,

these loci could partly explain phenotypic sexual dimorphisms and

additionally contribute to the phenotypic characteristics observed

in chrX aneuploidies.

Given the underutilization of chrX data in previous studies and

hence the potential for novel biological discoveries, we aimed at

surveying the contribution of the chromosome to complex traits.

To this end, we expanded the marker set for chrX by imputing the

non-pseudoautosomal region of chrX in almost 25,000 Finnish

and Swedish individuals from seven discovery and one replication

cohort (Table 1) by utilizing the recently released comprehensive

reference panel from the 1000 Genomes Project [9]. We focused

our chrX-wide screen on twelve quantitative anthropometric and

cardiometabolic phenotypes for which hundreds of autosomal, but

no X-chromosomal, loci have been identified in GWAS of

individuals of European ancestry, namely height, body-mass-index

(BMI), waist-hip-ratio (WHR), systolic and diastolic blood pressure

(SPB and DBP), C-reactive protein, fasting insulin and glucose,

total, LDL and HDL cholesterol (TC, LDL-C and HDL-C) and

triglycerides (TG). By using a linear mixed model, we show that

the variation in chrX influences the levels of many of these

complex phenotypes and in an association analysis identify and

replicate three new associated X-chromosomal loci, one for fasting

insulin and two for height, hence demonstrating the value of

assessing chrX associations. Further, we find strong evidence for a

lack of dosage compensation in one of the two associated height

loci by applying a meta-analysis that allows for sex heterogeneity

in effects and by a formal statistical model comparison between the

different dosage compensation models given the observed data.

Results

Genetic variance in chrX contributes to the levels of
many anthropometric and metabolic phenotypes

We first estimated the proportion of variance in each of the

twelve phenotypes accountable jointly to the common and low-

frequency (minor allele frequency (MAF) .1%) SNPs in chrX

using a linear mixed model [2,10] in the study samples for which

the individual-level genotype data were available (Materials and

Methods). ChrX variants were estimated to contribute to the levels

of many of these phenotypes (Table 2): under the model of equal

variance in males and females (see Materials and Methods for

discussion about the models), more than 0.5% of the variance in

height, SBP, HDL-C, fasting glucose and insulin appear to be due

to chrX variation, hence motivating the search for associated

variants in chrX. The highest estimate for X-linked variance

(1.4%, P-value = 2.0061026) was observed for height, a highly

heritable and polygenic phenotype. For the other phenotypes the

statistical significance of the estimates was not overwhelming, a

result of the available sample size and lower trait heritability, but

also the estimates for SBP, HDL-C and fasting insulin were

significantly different (P-value,0.05) from zero. In these four

phenotypes, which showed non-zero X-linked variance, on

average 4.0% (range 2.4%–6.0%) of the estimated whole-genome

genetic variance was attributable to chrX while the corresponding

value over all twelve traits was 2.6%.

Following the work of Yang et al. [2] we calculated the variance

estimates under three different models for dosage compensation,

i.e., equal variance between men and women, full dosage

compensation and no dosage compensation (Table S1). The

differences between the model fit were small (as measured by

likelihood-ratios) and none of the models was consistently favored

above the other two. This is likely due to our sample size being

limited for such comparisons, but may also reflect the differences

in the genetic architecture of the various loci in chrX that

contribute to the variance for each phenotype.

ChrX-wide association analysis identifies three associated
loci

In order to identify X-linked loci contributing to the phenotypic

variance we assessed associations between directly genotyped and

imputed chrX SNPs and the twelve phenotypes across seven

discovery cohorts (N = 19,697; Table 1). As the majority of the loci
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in chrX are subject to XCI, we adopted an allele coding that is

consistent with the full dosage compensation model, i.e. we treated

hemizygous men as equivalent to homozygous women (Materials

and Methods). Within each cohort the associations were first

studied separately for males and females using SNPTEST [11] and

the results were subsequently combined in a fixed-effects meta-

analysis in GWAMA [12]. By analyzing the associations of up to

405,411 polymorphic high-quality SNPs we identified three

associated loci (P-value,561028): two for height (both in

Xq21.1) and one for fasting insulin (in Xq23) (Table 3, Table

S2, Figure 1). We followed-up these findings in an independent

replication set and found further evidence for association in all

three loci (discovery and replication combined up to N = 24,729),

with all lead SNP P-values,661029 (Table 3).

In the more strongly associated height locus the associated SNPs

(lead SNP rs1751138, joint, i.e., discovery and replication

combined, P-value = 3.03610210, MAF = 0.36) are located ap-

proximately 35 kb upstream of ITM2A (integral membrane

protein 2A), a gene implicated in early cartilage development

[13,14]. We observed that the minor A allele of rs1751138, which

is associated with shorter stature, is also associated with an

increased expression of ITM2A in whole blood (P-val-

ue = 6.23610214, N = 513; Materials and Methods), providing

further evidence for ITM2A as a functional candidate gene for this

association. The second region associated with height spans

FGF16, ATRX and MAGT1. The lead SNP (rs182838724, joint P-

value = 2.7161029, MAF = 0.30) is intronic within ATRX, a gene

associated with the X-linked alpha thalassaemia mental retarda-

tion syndrome (ATR-X), a rare condition manifesting itself as

profound developmental delay often accompanied by several other

distinct characteristics including skeletal abnormalities in 90% and

short stature in two thirds of the affected individuals [15]. As the

two height lead SNPs map only 2 Mb apart, we confirmed that

the associations are independent of each other by conditioning

the association analysis on the lead SNP of the ITM2A locus. The

conditional analysis did not attenuate the height signal in the

ATRX region, yet here the most associated SNP (rs34979608, joint

P-value = 1.5261029, r2 with rs182838724 = 0.91; Table S3,

Figure S1) maps outside ATRX, 4 kb downstream of MAGT1, a

gene encoding a magnesium transporter. Both of the height

associations are present already in childhood (P-value for

Author Summary

The X chromosome (chrX) analyses have often been
neglected in large-scale genome-wide association studies.
Given that chrX contains a considerable proportion of
DNA, we wanted to examine how the variation in the
chromosome contributes to commonly studied pheno-
types. To this end, we studied the associations of over
400,000 chrX variants with twelve complex phenotypes,
such as height, in almost 25,000 Northern European
individuals. Demonstrating the value of assessing chrX
associations, we found that as a whole the variation in the
chromosome influences the levels of many of these
phenotypes and further identified three new genomic
regions where the variants associate with height or fasting
insulin levels. In one of these three associated regions, the
region near ITM2A, we observed that there is a sex
difference in the genetic effects on height in a manner
consistent with a lack of dosage compensation in this
locus. Further supporting this observation, ITM2A has been
shown to be among those chrX genes where the X
chromosome inactivation is incomplete. Identifying phe-
notype associations in regions like this where chrX allele
dosages are not balanced between men and women can
be particularly valuable in helping us to understand why
some characteristics differ between sexes.

Table 1. A summary of the characteristics of the discovery and replication cohorts.

Cohort Full name Sex N Age (years) Height (cm) BMI (kg/m2)

Discovery

NFBC Northern Finland Birth Cohort 1966 Males 2388 31.060.0 178.266.4 25.263.6

Females 2644 31.060.0 164.866.2 24.264.7

COROGENE The COROGENE Study Males 2441 60.4612.8 176.066.7 27.464.2

Females 1502 62.8613.4 161.666.6 26.965.2

DGI Diabetes Genetics Initiative Males 1534 61.0610.6 174.966.3 27.563.7

Females 1608 62.5610.7 161.766.1 27.864.7

GENMETS Health2000 GenMets Study Males 1000 49.2610.4 176.466.6 27.363.9

Females 1040 52.1611.4 162.766.5 27.265.0

YFS The Cardiovascular Risk in Young Finns Study Males 917 37.665.1 179.766.7 26.864.3

Females 1111 37.665.0 166.066.0 25.365.0

PredictCVD Case control sample from the FINRISK surveys Males 1180 51.5613.0 174.566.8 27.664.3

Females 686 52.2613.4 161.566.5 27.365.3

HBCS Helsinki Birth Cohort Study Males 696 61.462.8 176.965.8 27.564.3

Females 950 61.563.0 163.265.8 27.765.1

Replication

FINRISK Subset from the FINRISK 1997 and 2002 surveys Males 2287 46.8613.4 175.867.0 26.764.1

Females 2745 45.1612.4 162.666.2 26.265.1

N: maximum number of individuals with phenotype and genotype data available; BMI: Body-mass-index; Age, height and BMI are given as mean 6 standard deviation.
doi:10.1371/journal.pgen.1004127.t001
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ITM2A = 1.5861025, P-value for ATRX = 0.00955, N = 3287,

subset of two of the study cohorts, ages 8–10; Table S4), but for

the ATRX locus the association appears weaker in children than in

the same individuals in adulthood (beta in childhood = 0.059, beta

in adulthood = 0.092, P-value for difference in effect sizes = 0.043;

Table S4) suggesting additional influence of puberty. In the third

associated locus, the dosage of the minor G allele of rs139163435

(MAF = 0.071) was robustly associated with lower levels of fasting

insulin across all cohorts (joint P-value = 5.1861029). The lead

SNP maps to an apparent gene desert: the gene closest to the

association, SLC6A14, a possible candidate gene for X-linked

obesity (OMIM: 300444), lies more than 500 kb away.

Genetic effects near ITM2A suggest a lack of dosage
compensation

Up to 25% of the chrX loci may not be subject to complete

dosage compensation [8], but in these regions also the inactivated

X chromosomes are transcriptionally fully or partially active.

When adopting an allele coding that is consistent with the full

dosage compensation model, as we did in the cohort-level

analyses, the genetic effects in these incompletely dosage

compensated loci are expected to be larger in absolute value in

women than in men. The fixed-effects meta-analysis does not,

however, account for potential sex heterogeneity. Therefore, we

complemented the fixed-effects analysis by performing a meta-

analysis that treats the male and female-specific genetic effects

separately, a so-called sex-differentiated meta-analysis (Materials

and Methods), in order to indicate loci showing incomplete dosage

compensation and to potentially also facilitate the discovery of new

associations.

Allowing for different effect sizes between males and females in

the meta-analysis pinpointed no further loci, yet the ITM2A lead

height SNP was more strongly associated in this sex-differentiated

analysis (joint P-value = 3.26610212; Table 3). Pointing to lack of

dosage compensation, in this locus the allelic effects were estimated

to be more than twice the size in women compared to men when

coding hemizygous men equal to homozygous women (standard-

ized beta in females: 0.093, se: 0.014; beta in males: 0.035, se:

0.009; P-value for the difference in the male and female

effects = 2.8561024; Table 3). For the other two new loci there

was no indication of heterogeneity in the male and female effects

(Table 3). Accordingly, the proportion of variance explained was

approximately twice the size in men compared to women in the

ATRX (0.22% vs. 0.14% for height) and Xq23 (0.51% vs. 0.19%

for fasting insulin) loci, as expected under the model of random

XCI, but not for the ITM2A SNP (0.12% vs. 0.39% for height)

(explained variances calculated under the assumption of full

dosage compensation; Table 3; Materials and Methods). The

observed deviation from the full dosage compensation model in

the ITM2A locus was not driven by differences in allele frequencies

or sample sizes, as these are similar between men and women

(Tables 1 and 3).

Building up evidence for a lack of dosage compensation
in the ITM2A locus

To verify the observation of lack of dosage compensation in the

ITM2A locus for height, we formally investigated how the models

of full dosage compensation and no dosage compensation explain

the data in the three associated loci pinpointed in our chrX-wide

association analysis. To this end we devised a novel application of

a Bayesian model-comparison framework [16] (Materials and

Methods), to quantify the relative support for each of the dosage

compensation models. While the Xq23 and ATRX associations

were highly consistent with full dosage compensation there was

clear evidence towards complete escape from the inactivation in

the ITM2A locus: Assuming that both models are equally probable

a priori, the posterior probabilities for the no dosage compensation

model are 0.07 for rs13916345 in Xq23 (fasting insulin), and 0.18

for rs182838724 near ATRX (height), but 0.99 for rs1751138 near

ITM2A (height) (Figure 2).

As lack of dosage compensation in the ITM2A locus in women

should be reflected in the level of ITM2A expression, given the two

actively transcribed X chromosomes, we evaluated the sex

difference in the level of the ITM2A expression probe that had

earlier showed a significant cis-effect with the lead SNP of the

locus. The average level of ITM2A expression in whole blood was

observed to be higher in women (P-value = 0.00251; Figure S2;

Materials and Methods), thus providing further support for

incomplete XCI in this locus.

Discussion

Motivated by the underrepresentation of reported GWAS

discoveries in chrX, we investigated the association of chrX to

twelve anthropometric and cardiometabolic traits in more than

24,500 individuals using a high-resolution map of non-pseudoau-

tosomal chrX SNPs. Our data demonstrate that SNPs in chrX are

associated with many of the studied phenotypes, including the

three novel loci pinpointed in our chrX-wide association analysis.

Additionally, our discovery of lack of dosage compensation for

height near ITM2A not only highlights the value of accounting for

potential sex heterogeneity when assessing chrX associations, but

Table 2. Estimates of the explained variances in the twelve
quantitative phenotypes attributable to chromosome X SNPs
and autosomal SNPs separately using equal variance (EV)
model.

Phenotype N hX (%)
seX

(%) P-value haut (%)
seaut

(%)

Height 14408 1.41 0.41 2.00E-06 52.35 2.41

SBP 9990 1.07 0.52 0.005 16.63 2.98

Fasting glucose 9151 0.84 0.57 0.06 11.15 3.09

HDL-C 11139 0.73 0.42 0.01 30.21 2.85

Fasting insulin 9616 0.68 0.47 0.04 12.66 2.98

TG 11140 0.43 0.4 0.1 19.88 2.72

CRP 9697 0.42 0.47 0.2 11.16 2.89

WHR 12334 0.22 0.34 0.2 12.75 2.36

BMI 14214 0.11 0.31 0.4 25.86 2.25

DBP 9984 0 0.42 0.5 12.5 2.89

LDL-C 11040 0 0.41 0.5 26.43 2.82

TC 11141 0 0.43 0.5 27.21 2.81

The estimates are based on an analysis of the individuals from six Finnish
cohorts using the program GCTA and 217,112 common and low-frequency chrX
SNPs (MAF.1%) directly genotyped or imputed with high-quality (info .0.8)
and 319,445 directly genotyped autosomal SNPs (MAF.1%).
hX: estimate for the proportion of explained variance accountable by the SNPs
in chromosome X in per cent; seX: standard error in per cent for the X
chromosome variance estimate; P-value: P-value for the test of hX = 0; haut:
estimate for the proportion of explained variance accountable by the SNPs in
autosomes in per cent; seaut: standard error in per cent for the autosomal
variance estimate; SBP: systolic blood pressure; HDL-C: high-density lipoprotein
cholesterol; TG: total triglycerides; CRP: C-reactive protein; WHR: waist-hip-ratio;
BMI: body-mass-index; DBP: diastolic blood pressure; LDL-C: low-density
lipoprotein cholesterol; TC: total cholesterol.
doi:10.1371/journal.pgen.1004127.t002
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Figure 1. A Manhattan plot across all the twelve phenotypes and regional association plots for the three associated loci. A. A
Manhattan plot showing the associations of the X chromosome SNPs to the twelve phenotypes in the discovery analysis. The associated loci (P-
value,5.061028) are highlighted with red dots and solid lines. B. A plot of the height associations in the Xq21.1 region showing two separate
association signals. C–E. The association plots for height near ITM2A (C) and height near ATRX (D) and for fasting insulin in Xq23 (E), showing the
association P-values in the discovery analysis. Yellow diamonds indicate the SNPs, which showed the strongest evidence of association in each of the
loci, and purple diamonds and the P-values given in the plots indicate the associations of these lead SNPs in the joint analysis of discovery and
replication data sets. Each circle in the plots indicates a SNP with the color of the circle (in C–E) showing the linkage disequilibrium between the SNP
and the highlighted lead SNP: dark blue (r2,0.2), light blue (r2.0.2), green (r2.0.4), orange (r2.0.6) and red (r2.0.8), The r2 values were calculated
using the genotype data from the COROGENE cohort, and the recombination rate, indicated by the blue lines in the background and the right hand
y-axis, was estimated from the CEU HapMap data. The bottom panels show the genes (RefSeq Genes) and their positions in each locus. In all plots the
dashed red line marks the threshold for genome-wide significance (P-value = 5.061028).
doi:10.1371/journal.pgen.1004127.g001
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also manifests that some of the X-linked loci may contribute to

sexual dimorphisms, in this case to the height difference between

men and women.

The contribution of common X-chromosomal SNPs to a few

complex phenotypes have been explored previously: Yang et al.

showed that between 0.57% and 0.82% of the variance in height,

BMI and von Willebrand factor is explained by the SNPs in chrX

[2]. In our study, we extended the estimates to further ten

anthropometric and cardiometabolic phenotypes, and also use a

more comprehensive set of SNPs, and similarly demonstrate that a

small but non-negligible proportion, up to 1.4%, of the total

variance in many of the twelve phenotypes studied appears

attributable to chrX. While the variance estimates for autosomes

have been observed to be proportional to the chromosome length

[2], our estimates for chrX were on average 2.6% of the total

genetic variance estimate, and therefore below what would be

expected based on the proportion of the genomic DNA contained

within chrX, i.e., approximately 5%. However, given the smaller

population size and lower mutation rate, chrX is genetically less

diverse than the autosomes, and indeed our estimates appear to be

more in line with around 3.4% of the SNPs in the 1000 Genomes

reference being X-chromosomal [9] (Figure S3). This implies that

around 3% of all GWAS discoveries could be hidden in chrX and

hence with the inclusion of chrX in GWAS further X-chromo-

somal loci for complex traits will be discovered.

As thus far chrX has only infrequently been included in GWAS

of the twelve traits studied, it is unsurprising that the three loci now

discovered, one for fasting insulin and two for height, represent the

first ones reported in chrX for these phenotypes in European

populations. Two earlier GWAS conducted in individuals of

African ancestry discovered a height locus in Xp22.3 [17,18], yet

the associated lead SNP is monomorphic in Europeans and the

region shows no signal in our analyses. One of the early height

GWAS including mainly European samples showed a suggestive

association (P-value = 361026) [19] mapping 8.6 kb from the

ITM2A association discovered in our analyses (r2 = 0.728 between

the lead SNPs), however, in that study the finding failed to

replicate and thus never reached the formal threshold for

significance.

While further studies are required to elaborate the causative

variants underlying the association with fasting insulin in Xq23, in

both of the height loci there are plausible candidate genes that

could be responsible for the observations. The first height

association spans FGF16, ATRX and MAGT1 in a gene rich

region. Both ATRX and MAGT1 have been implicated in mental

retardation syndromes, and interestingly the syndrome associated

with mutations in ATRX is often accompanied with skeletal

abnormalities and short stature in the affected individuals [15].

Another candidate is FGF16, which is a member of fibroblast

growth factor family shown to play various roles in developmental

processes including morphogenesis. Mouse studies proposed a

crucial role for FGF16 in cardiac morphogenesis [20] and,

recently, nonsense mutations in FGF16 were demonstrated to

associate with congenital limb malformations [21], suggesting the

involvement of the gene in human skeletal development. In the

second height locus, ITM2A is a functional candidate: The

association signal maps just 35 kb upstream of the transcription

start site of ITM2A, a gene known to be involved in cartilage

development [13,14]. Additionally, our eQTL analysis provided

further evidence showing that the height-associated variants in this

locus also influence the expression of ITM2A. Interestingly, high

expression of ITM2A in adipose tissue stem cells has been

Figure 2. Comparison of the dosage compensation models in the three associated loci applying Bayesian framework. A. Separately
estimated effect sizes of the three lead SNPs (dots labeled with rs-numbers) in females (x-axis) and males (y-axis) when female genotypes are coded
{0,1,2} and male genotypes {0,2}. Ellipses show the 95% confidence regions for the estimates. The lines show the regions of the expected values of the
effects under either full dosage compensation (FDC) or no dosage compensation (NDC) models. The associated traits are fasting insulin (INS) and
height (HGT). B. Posterior probability of no dosage compensation (NDC) model at the three lead SNPs when the other candidate is full dosage
compensation model and the two models are equally probable a priori. Labels under bars give the rs-number of the SNP, the associated trait
(INS = fasting insulin or HGT = height) and the height of the bar.
doi:10.1371/journal.pgen.1004127.g002
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proposed to inhibit the initiation of chondrogenesis in these cells

[22]. As the allele associated with shorter stature associated with

increased expression of ITM2A, this suggests the allelic effect to

height could be mediated through the capacity to generate

cartilage and bone.

Given the unique nature of chrX compared to autosomes, i.e.,

males being hemizygous for the chromosome and the partly

incomplete XCI, which could give rise to sexual dimorphisms, we

analyzed our association data also by accounting for potential

heterogeneity in genetic effects between sexes. This led to the

discovery of considerable sex-difference in the genetic effects for

height near ITM2A, while for the other two associated loci there

was no such evidence. A large-scale scan on 270,000 individuals

for sexual dimorphisms in autosomal genetic effects for various

anthropometric phenotypes identified significant sex differences

only in associations for waist phenotypes and none was observed

for height [23]. Additionally, the few previous height GWAS that

had significant or suggestive discoveries in chrX [17–19] did not,

to our knowledge, evaluate for potential sex heterogeneity in the

chrX associations. Therefore, the sex difference in genetic effects

for height in the ITM2A locus here is likely the first demonstration

of its kind and hence warrants the investigation for potential sex

heterogeneity in associations for other X-linked loci.

The difference in the genetic effects for males and females near

ITM2A appeared fully consistent with no dosage compensation in

this locus. While we cannot completely exclude the possibility that

such a difference can also arise through some other type of sex-by-

SNP interaction effect, we gained further confirmation for the lack

of dosage compensation for height in ITM2A by quantifying the

evidence for the two dosage compensation models in each of the

associated loci using a new model comparison framework.

Additionally, the gene expression data that showed higher

expression of ITM2A in women, as expected if two X chromo-

somes are transcriptionally active in this locus. Similarly,

expression of ITM2A was previously observed to be female-biased

in monocytes and in the same study the cis-eQTL for ITM2A

showed sex heterogeneity [24]. Furthermore, strongly speaking for

the role of impartial silencing of this locus, in a comprehensive

survey into XCI, ITM2A was found to be among the 10% of chrX

genes, which variably escape from inactivation, i.e., are expressed

from the inactivated copy of X (Xi) in a majority of women [8].

For comparison, the expression of ATRX and MAGT1 in the other

height locus (FGF16 was not included in the survey) from Xi is fully

silenced [8].

Given the converging evidence from our association study,

statistical model comparison of the association data, gene

expression data and literature, it seems likely that our observations

of sex heterogeneity in the genetic effects for height near ITM2A

are due to incomplete dosage compensation in this locus.

Therefore, our study likely provides, to the best of our knowledge,

the first link between an XCI-escaping gene and phenotypic

variation in non-syndromic individuals. This discovery has several

plausible implications. As increased expression of ITM2A links

with shorter stature, the greater dosage of ITM2A in women

compared to men may explain some of the substantial sex

difference observed in height. In addition to the sex differences in

the overall expression levels, incomplete dosage compensation also

causes the genetic variation in the population to have different

effects on the trait distribution of males and females. Assuming

that rs1751138, the ITM2A lead SNP, is the causal variant for the

observed height association, we estimate that the observed 36%

frequency of the height decreasing allele accounts for 1.5% of the

current difference in mean height between men and women in the

Finnish population, when compared to a population that was

monomorphic for the major allele at this SNP (Materials and

Methods). Besides contributing to sexual dimorphisms, XCI-

escaping genes are candidates for causing the abnormalities in

chrX aneuploidies. Hence, our findings also highlight ITM2A as a

potential contributor to the height phenotype often observed in

individuals with an unusual number of X chromosomes [25].

To conclude, our findings illustrate the value of including the

chrX in large-scale genetic studies and provide a motivation to

assess the chrX associations in larger sample sizes, particularly for

traits where we estimated chrX to explain part of the trait

variation. We anticipate that such studies will identify further loci

that contribute to the heritability of complex traits, as well as

increase our understanding of their genetic architecture and

underlying biology. As evidenced by our observations in the

ITM2A locus, studying chrX association opens avenues for the

discovery of links between phenotypes and loci that escape from

XCI. Such associations bear potential to bring insights into the

biological bases of sexually dimorphic traits such as complex

diseases with different incidences between males and females.

Materials and Methods

Cohorts
The study included individuals from seven discovery cohorts:

The Northern Finland Birth Cohort 1966 (NFBC1966), The

Cardiovascular Risk in Young Finns Study (YFS), The COR-

OGENE Study (COROGENE), Helsinki Birth Cohort Study

(HBCS), the Health 2000 GenMets Study (GenMets), the Diabetes

Genetics Initiative (DGI) and a prospective cardiovascular disease

(CVD) case-control sample from the FINRISK collections

(PredictCVD). In the replication stage a further subset of

individuals from the FINRISK collections (FR) was included. A

summary of the cohort characteristics is given in Table 1. All

participants gave an informed consent and the data was de-

identified for all analyses.

NFBC1966 is a birth cohort study of children born in 1966 in

the two northernmost provinces of Finland originally designed to

focus on factors affecting pre-term birth, low birth weight, and

subsequent morbidity and mortality [26]. The blood sample for

the DNA extraction and all phenotype data (except the childhood

height measurements) used in the present study were collected at a

follow-up visit when the participants were 31 years of age. The

COROGENE cohort includes acute coronary syndrome patients

who underwent coronary angiogram between June 2006 and

March 2008 in the Helsinki University Central Hospital [27] and

matched controls from the Helsinki-Vantaa region participants of

FINRISK 1997, 2002, and 2007 surveys performed in Finland

every five years since 1972 [28]. In the current study, the

COROGENE cases were only included in the analyses of height

and body-mass-index. The DGI sample consists of individuals

from Sweden and Finland and was originally designed to identify

loci associated with type 2 diabetes (T2D) [29]. The sample

consists of patients with T2D; gender, BMI, age and geograph-

ically matched controls and discordant sibships. The current

analysis was performed on 3142 individuals, including all

individuals from the original analysis and individuals previously

excluded after having been identified as belonging to pairs of

samples identified as cryptic first degree relatives [29]. GenMets is

a subset from the Health 2000 survey collected in 2000–2001 to

obtain information on the most important public health problems

in Finland [30]. The cohort includes metabolic syndrome cases

and their matched controls aged 30 years and above. YFS is a

longitudinal follow-up study of children and adolescents from all

around Finland initiated in 1980 to study the cardiovascular risk
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from childhood to adulthood [31], and the data for the present

study is from the 27-year follow-up when the participants were 30–

45 years of age. The PredictCVD study comprises of incident

cardiovascular disease cases and matched controls selected from

the 1992, 1997, 2002 and 2007 FINRISK surveys [28]. For the

analyses of the current study, the 96 individuals included and

genotyped in both COROGENE and PredictCVD samples were

excluded from the COROGENE data set. The FR sample used

for replication includes a random, yet non-overlapping with

COROGENE and PredictCVD, subset of individuals from

FINRISK surveys from 1997 and 2002.

Genotyping and imputation
The following genotyping arrays were used for genotyping the

study cohorts: Illumina 370K array for NFBC1966, Illumina

610K array for COROGENE and GenMets, custom generated

Illumina 670K array for YFS and HBCS, Illumina 770K array for

PredictCVD, Illumina HumanCoreExome-12v1-0 for FR and

Affymetrix GeneChip Human Mapping 500K Array set for DGI.

The quality control procedures included removing closely related

individuals (PI_HAT .0.1) by analyzing pairwise IBD relation-

ships for all individuals in five Finnish discovery cohorts together

and have been described previously in detail [29,32]. The

imputation of non-pseudoautosomal chrX variants into the study

cohorts was performed on the cleaned data in each cohort using

IMPUTE version 2.2.2 [33,34]. The reference panel used in the

imputation was the integrated variant set release (v3) released in

March 2012 (http://mathgen.stats.ox.ac.uk/impute/

data_download_1000G_phase1_integrated.html). The data were

split into genomic regions of ,5 Mb (with 250 kb (DGI) or 1 Mb

(other cohorts) buffer region), using effective population size of

20000 (DGI) or 11418 and k value of 80.

Phenotype adjustments
Within each cohort, all twelve phenotypes were adjusted for

males and females separately using age (not in NFBC1966) and ten

first principal components as covariates. Additionally, WHR and

blood pressure measurements were adjusted for BMI. The

residuals from the linear regression were inverse normal

transformed to have mean 0 and standard deviation 1, and the

normalized residuals were then used as phenotypes in the variance

estimate and association analyses. In cohorts where the informa-

tion was available, individuals on lipid-lowering medication were

excluded prior the covariate adjustment for the blood lipids (TC,

TG, LDL-C and HDL-C), blood-pressure medication was an

exclusion criterion for systolic and diastolic blood pressure and

diabetes medication for glucose and insulin. Non-fasting individ-

uals were excluded from the analysis of glucose and insulin, and

pregnant women were only included in the analysis of CRP and

height. All phenotype adjustments and data normalization were

done in STATA/SE 12.1 or R (version 2.11.1). The sample size

for each phenotype in the discovery cohorts, i.e., the number of

individuals with both genotype and phenotype information, are

given in Table S5.

Estimation of the variance explained by the X
chromosome and the autosomes

We estimated how much phenotypic variance a panel of

217,112 high quality SNPs from chrX (IMPUTE2 info .0.8,

MAF .0.01) explain using the linear mixed model approach

implemented in GCTA (v.1.13) [10]. This analysis included six of

the seven discovery cohorts (NFBC1966, COROGENE, Gen-

Mets, YFS, HBCS and PredictCVD) for which we had access to

the individual genotype data. Following the work of Yang et al.

[2], we applied three models for dosage compensation: full dosage

compensation (FDC), no dosage compensation (NDC) and equal

variance in both sexes (EV). However, none of the models was

consistently favored over the other two across the traits (Table S1).

In the main text we report the variance estimates from the EV

model because those best capture the average genetic contribution

of chrX to the population: in FDC and NDC models the variances

between males and females are different and for both models the

mean of the sex-specific variances is close to the single value given

by the EV model in our data. Furthermore, since the traits have

been normalized to have a variance of 1 within each sex, the

models that assume different genetic variance between the sexes

(namely FDC and NDC) should also allow different residual

variances between the sexes but this has not been implemented in

GCTA (v.1.13). We report the results from all three models using

imputed SNPs in Table S1.

For a comparison, we also estimated the genetic variances using

9,517 directly genotyped SNPs in chrX but did not find notable

differences from the results with the imputed data (Table S6). For

another comparison, we estimated the variance explained by the

319,445 directly genotyped SNPs with MAF.0.01 in the

autosomes (Table 2). If the variants contributing to the traits were

uniformly distributed across the genome, then we would expect

that chrX genetic variance is about 3% of the autosomal genetic

variance, as about 3% of the genetic variation in our data is in the

X chromosome. Figure S3 plots estimated autosomal genetic

variance against chrX one.

All mixed model analyses excluded individuals in such a way

that none of the remaining pairs of individuals had an estimated

relatedness coefficient r .0.05 and the same trait values were

used as with the association analyses. For comparison, the analyses

were also carried out by using r = 0.025 as the relatedness cut-off

(Table S7).

Chromosome X-wide association analyses
The associations between variants and phenotypes were tested

for all available genotyped or imputed SNPs in chrX separately for

men and women in each cohort encoding genotypes {0,2} in men

and {0,1,2} in women, i.e., assuming that one of the two X

chromosomes in women is fully inactivated. In DGI the analysis

was performed using a linear mixed model that can account for

sample structure, as implemented in EMMAX [35]. In other

cohorts the analyses were performed in SNPTEST [11] (version

2.4.0) assuming an additive genetic model and using expected

genotype counts. In each cohort the results were filtered prior the

meta-analysis to include only good-quality variants (SNPTEST

info in women .0.4) and variants with more than three copies of

the minor allele (minor allele count in women .3) resulting in

between 323,564 and 383,337 variants per cohort in the discovery

set.

The cohorts and genders were combined in a fixed-effects

(inverse variance weighted) meta-analysis and in a sex-differenti-

ated meta-analysis, which combines the results allowing for the

allelic effects to differ between men and women and also conducts

a meta-analysis separately for the results from men and from

women, both meta-analysis options implemented in GWAMA

[12]. Genomic control was applied for the association results of

each study to account for P-value inflation arising from residual

population structure in the data or other confounding factors. The

meta-analysis summary was also corrected with the genomic

control lambda for those phenotypes where there was indication of

inflation (lambda .1.0): The genomic control lambdas for the

twelve phenotypes were between 0.94–1.13 in the discovery
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analysis (Table S8). For each phenotype the meta-analysis results

were further filtered to include only the SNPs for which the

association result was available from at least two of the input files,

hence association results were available for up to 405,411 SNPs.

Adopting the genome-wide significance P-value threshold, P-

value,561028, three loci showed significant associations in the

discovery analysis. In these associated loci the lead SNPs were

imputed with high quality (imputation info .0.80) in all cohorts.

Height associations in childhood
To investigate whether the observed associations with height

near ITM2A and ATRX are present already in pre-puberty, the

association of the chrX SNPs with childhood height was studied in

a subset of individuals from NFBC1966 and YFS cohorts

(N(males) = 1204 and N(females) = 1189 in NFBC1966;

N(males) = 417 and N(females) = 478 in YFS) who had height

measurements available both from pre-puberty (ages 8–10 years

for NFBC1966 and 9 years for YFS) and adulthood. The height

measurements were adjusted for age (in NFBC1966) and ten first

principal components, the residuals were inverse normal trans-

formed and subsequently the association of the SNP dosage with

the transformed residuals was studied in SNPTEST using an

additive model of association. The SNP-phenotype associations for

the two height measurements were studied in both cohorts,

separately for the genders, and the results were combined in a

fixed-effects and a sex-differentiated meta-analysis using GWAMA

applying genomic control correction. The association results for

the height lead SNPs with childhood and adulthood height in these

individuals are given in Table S4.

Cis-eQTL analysis of the associated regions
A subset of the COROGENE cohort (N = 513) had both

genome-wide SNP data and gene expression data from whole

blood, assayed using Illumina HumanHT-12v3 Expression

BeadChips, available, as described previously [36]. The associa-

tions between the three lead SNPs and all gene expression probes

within 1 Mb of the SNPs was studied in SNPTEST using an

additive model of association. For the one significantly associated

expression probe (ITM2A/ILMN_2076600) we further evaluated

whether the level of expression was different between the sexes by

comparing the unadjusted expression in males and females using

Student’s t-test in R.

Variance explained by individual loci in chromosome X
As males carry only one copy of the X chromosome, the

genotype variances of the SNPs in the non-pseudoautosomal

region of chrX differ between women and men. Assuming the

model of complete inactivation of one the X chromosomes in

women, and hence coding the X-linked alleles {0,2} in men and

{0,1,2} in women, the genotype variance in men is twice that in

women: 2P(1-P) for females and 4P(1-P) males, where P denotes

the allele frequency of the SNP. Thus, the estimation of the

variance explained from the meta-analysis summary statistics

should be evaluated for the genders separately using the formulas

2P(1-P)bF
2 for women and 4P(1-P)bM

2 for men, where bF and bM

denote the standardized effect sizes in women and men,

respectively.

Comparison of dosage compensation models
We applied a Bayesian framework [37] to compare full

dosage compensation (FDC) and no dosage compensation

(NDC) models at the top SNPs of the three associated regions.

We used the estimated effect sizes bF (allelic effect in females)

and bM (effects in males when two genotypes are coded 0 and 2)

together with their standard errors to approximate the likelihood

function as in [16]. The two models differ in their prior

specification:

FDC: bF,N(0, s2), bM,N(0, s2) and cor(bF,bM) = 1

NDC: bF,N(0, s2), bM,N(0, 0.25 s2) and cor(bF,bM) = 1

Where s2, the variance of the prior effect size in females,

depends on the allele frequency of the SNP and is chosen so that

with 95% probability the studied SNP explains less than 1% of the

variance of the trait. Intuitively, according to the FDC model

bF = bM whereas according to the NDC model bF = 2bM. Bayes

factors between the two models can be computed using the

approximate likelihood approach [16] and the posterior proba-

bilities of the NDC model are shown in Figure 2 under the

assumption that each model is equally likely a priori.

Effect of lack of dosage compensation on sex difference
in mean trait value

Suppose that each copy of the minor allele (‘a’ with frequency fa)

at a particular SNP on chrX causally affects the trait value by ‘b’

both in males and in females, i.e., there is no dosage compensa-

tion. To simplify notation, we assume that the mean trait value of

males with genotype ‘A’ is the same as the mean trait value in

females with genotype ‘AA’, and denote this mean by ‘m’. The

overall mean trait values in males, ‘mM’, and in females, ‘mF’, are

mM = (12fa)Nm + faN(m+b) = m + faNb, and

mF = fAANm + fAaN(m+b) + faaN(m+2b) = m + (fAa+2faa)Nb = m +
2faNb

The difference in the sex-specific means is

mM 2 mF = m + faNb 2 (m + 2faNb) = 2 faNb
So the effect of allele ‘a’ is either to increase (if b,0) or decrease

(if b.0) the male-female difference in the mean trait value by

|faNb|, compared to the situation where only allele ‘A’ was present

in the population.

Application to rs1751138, the lead SNP of the association near

ITM2A:

b = 20.555 cm (se = 0.0734 cm). This is a fixed-effects estimate

of the allelic effects in quantile normalized height in females

20.092559 (0.013934) and males 20.071802 (0.019274), multi-

plied by an estimate of the standard deviation of height in Finland,

6.5 cm.

Thus by introducing the minor allele (A) with frequency

fa = 0.36 in the population, the male-female difference in mean

height increases by 0.36*0.555 cm = 0.20 cm. As the mean

difference in height between the sexes in Finland is about

13.7 cm, the variation at this SNP accounts for 0.20 cm/

13.7 cm = 0.0146<1.5% of that difference.

Supporting Information

Figure S1 Regional association plots of the associations in the

two height loci after conditioning the association analysis on

rs1751138, the lead associated SNP in the ITM2A height locus. A:

The region near FGF16, ATRX and MAGT1. The lead associated

SNP in this analysis, rs34979608, is highlighted with diamonds,

the yellow diamond indicating the association in the discovery

analysis and the purple diamond and text the association in the

joint analysis of discovery and replication cohorts. The yellow 6
indicates the association of the SNP that was most associated with

height in this region in the discovery meta-analysis, i.e., before the

conditional analysis (P-values 3.0261027 and 2.8061028 in the

conditional analysis using the discovery cohorts and both

discovery and replication data, respectively). B: The region near

ITM2A. No association with height remains in this region in the
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conditional analysis. Each circle in the plots indicates a SNP and

the color of the circle shows the linkage disequilibrium, r2, of the

SNP to the lead associated SNP in each region, rs34979608 in A

and rs1751138 in B: dark blue (r2,0.2), light blue (r2.0.2), green

(r2.0.4), orange (r2.0.6) and red (r2.0.8). The correlation

structure between the SNPs was calculated from Finnish data

using the genotypes from the COROGENE cohort. The light

blue line in the background and the right hand y-axis show the

recombination rate in the region as calculated from HapMap

CEU data.

(PDF)

Figure S2 Boxplots of ITM2A expression in men and women.

The levels of whole blood ITM2A expression visualized using

boxplots separately for men (blue) and women (orange) in the

individuals of COROGENE cohort (N = 513) for whom expres-

sion data was available. The mean expression level is higher in

women (P-value = 0.00251) providing support for incomplete

dosage compensation between men and women in the ITM2A

locus.

(PDF)

Figure S3 Comparison of the phenotypic variances attributable

to chromosome X variants (y-axis) and autosomal variants (x-axis).

The dashed line is y = 0.03x and shows the region of the expected

values of the points under the assumption that the genetic effects

are small and uniformly distributed across the genome and that

the X chromosome contains about 3% of all genetic variation. The

dotted lines show the standard errors of the estimates. The traits

are TC: total cholesterol; LDL-C: low-density lipoprotein

cholesterol; HDL-C: high-density lipoprotein cholesterol; TG:

total triglycerides; CRP: C-reactive protein; BMI: body-mass-

index; WHR: waist-hip-ratio; SBP: systolic blood pressure; DBP:

diastolic blood pressure; HGT: height; GLK: fasting glucose; INS:

fasting insulin.

(PNG)

Table S1 Estimates of the phenotypic variance attributable to

217,112 imputed and genotyped chrX SNPs using three different

dosage compensation models.

(XLS)

Table S2 Association results in each discovery cohort for the

lead SNPs in the three associated loci (rs1751138 near ITM2A and

rs182838724 near FGF16, ATRX and MAGT1 for height and

rs139163435 in Xq23 for fasting insulin).

(XLS)

Table S3 Lead associations in the height locus near FGF16,

ATRX and MAGT1 after conditioning the association analysis on

the lead SNP of the ITM2A locus, rs1751138.

(XLS)

Table S4 Associations of the most associated SNPs in the two

height loci with height in childhood (age 8–10) and adulthood in a

subset of the study subjects from two cohorts (NFBC1966 and

YFS) for whom childhood height measurements were available.

(XLS)

Table S5 Sample sizes for the twelve phenotypes in the

discovery cohorts.

(XLS)

Table S6 Estimates of the phenotypic variance attributable to

9,517 directly genotyped chrX SNPs using three different dosage

compensation models.

(XLS)

Table S7 Estimates of the phenotypic variance attributable to

217,112 imputed and genotyped chrX SNPs using three different

dosage compensation models using a threshold of 0.025 to remove

related individuals.

(XLS)

Table S8 Genomic control lambdas for the twelve phenotypes in

the X chromosome-wide meta-analyses of the discovery cohorts.

In cases where lambda .1, the meta-analysis results were

corrected using the lambda statistic.

(XLS)
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