140 research outputs found

    The new COST Action European Venom Network (EUVEN)—synergy and future perspectives of modern venomics

    Get PDF
    Venom research is a highly multidisciplinary field that involves multiple subfields of biology, informatics, pharmacology, medicine, and other areas. These different research facets are often technologically challenging and pursued by different teams lacking connection with each other. This lack of coordination hampers the full development of venom investigation and applications. The COST Action CA19144–European Venom Network was recently launched to promote synergistic interactions among different stakeholders and foster venom research at the European level

    A walk in the PARC:developing and implementing 21st century chemical risk assessment in Europe

    Get PDF
    Current approaches for the assessment of environmental and human health risks due to exposure to chemical substances have served their purpose reasonably well. Nevertheless, the systems in place for different uses of chemicals are faced with various challenges, ranging from a growing number of chemicals to changes in the types of chemicals and materials produced. This has triggered global awareness of the need for a paradigm shift, which in turn has led to the publication of new concepts for chemical risk assessment and explorations of how to translate these concepts into pragmatic approaches. As a result, next-generation risk assessment (NGRA) is generally seen as the way forward. However, incorporating new scientific insights and innovative approaches into hazard and exposure assessments in such a way that regulatory needs are adequately met has appeared to be challenging. The European Partnership for the Assessment of Risks from Chemicals (PARC) has been designed to address various challenges associated with innovating chemical risk assessment. Its overall goal is to consolidate and strengthen the European research and innovation capacity for chemical risk assessment to protect human health and the environment. With around 200 participating organisations from all over Europe, including three European agencies, and a total budget of over 400 million euro, PARC is one of the largest projects of its kind. It has a duration of seven years and is coordinated by ANSES, the French Agency for Food, Environmental and Occupational Health & Safety

    PFAS levels and determinants of variability in exposure in European teenagers - Results from the HBM4EU aligned studies (2014-2021)

    Get PDF
    Background: Perfluoroalkyl substances (PFAS) are man-made fluorinated chemicals, widely used in various types of consumer products, resulting in their omnipresence in human populations. The aim of this study was to describe current PFAS levels in European teenagers and to investigate the determinants of serum/plasma concentrations in this specific age group. Methods: PFAS concentrations were determined in serum or plasma samples from 1957 teenagers (12-18 years) from 9 European countries as part of the HBM4EU aligned studies (2014-2021). Questionnaire data were post-harmonized by each study and quality checked centrally. Only PFAS with an overall quantification frequency of at least 60% (PFOS, PFOA, PFHxS and PFNA) were included in the analyses. Sociodemographic and lifestyle factors were analysed together with food consumption frequencies to identify determinants of PFAS exposure. The variables study, sex and the highest educational level of household were included as fixed factors in the multivariable linear regression models for all PFAS and each dietary variable was added to the fixed model one by one and for each PFAS separately. Results: The European exposure values for PFAS were reported as geometric means with 95% confidence intervals (CI): PFOS [2.13 μg/L (1.63-2.78)], PFOA ([0.97 μg/L (0.75-1.26)]), PFNA [0.30 μg/L (0.19-0.45)] and PFHxS [0.41 μg/L (0.33-0.52)]. The estimated geometric mean exposure levels were significantly higher in the North and West versus the South and East of Europe. Boys had significantly higher concentrations of the four PFAS compared to girls and significantly higher PFASs concentrations were found in teenagers from households with a higher education level. Consumption of seafood and fish at least 2 times per week was significantly associated with 21% (95% CI: 12-31%) increase in PFOS concentrations and 20% (95% CI: 10-31%) increase in PFNA concentrations as compared to less frequent consumption of seafood and fish. The same trend was observed for PFOA and PFHxS but not statistically significant. Consumption of eggs at least 2 times per week was associated with 11% (95% CI: 2-22%) and 14% (95% CI: 2-27%) increase in PFOS and PFNA concentrations, respectively, as compared to less frequent consumption of eggs. Significantly higher PFOS concentrations were observed for participants consuming offal (14% (95% CI: 3-26%)), the same trend was observed for the other PFAS but not statistically significant. Local food consumption at least 2 times per week was associated with 40% (95% CI: 19-64%) increase in PFOS levels as compared to those consuming local food less frequently. Conclusion: This work provides information about current levels of PFAS in European teenagers and potential dietary sources of exposure to PFAS in European teenagers. These results can be of use for targeted monitoring of PFAS in food.This work was supported by the European Union’s Horizon 2020 research and innovation programme under Grant agreement No 733032 HBM4EU (www.HBM4EU.eu), and received co-funding from the authors’ organizations: Riksmaten Adolescents: Riksmaten Adolescents was performed by the Swedish Food Agency with financial support from the Swedish Environmental Protection Agency and the Swedish Civil Contingencies Agency. NEB II: The Norwegian Institute of Public Health (NIPH) has contributed to funding of the Norwegian Environmental Biobank (NEB). The laboratory measurements have partly been funded by the Research Council of Norway through research projects (275903 and 268465) PCB cohort follow-up: PCB cohort follow-up received additional funding from the Ministry of Health of the Slovak Republic, program 07B0103. BEA: BEA study was funded by the Spanish Ministry of Agriculture, Fisheries and Food and the Instituto de Salud Carlos III (SEG 1321/15) SLO-CRP: The Slovenian SLO-CRP study was co-financed by the Jozef Stefan Institute program P1- 0143, and a national project “Exposure of children and adolescents to selected chemicals through their habitat environment” (grant agreement No. C2715-16-634802). CROME: CROME study was co-funded by the European Commission research funds of Horizon 2020. ESTEBAN: ESTEBAN study was funded by Santé Publique France and the French ministries of Health and the Environment. GerES V-sub: The funding of the German Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection is gratefully acknowledged. FLEHS IV: The Flemish Center of Expertise on Environment and Health is funded by the Government of Flanders, Department of Environment & Spatial Development.S

    A Quaternary ZnCdSeTe Nanotip Photodetector

    Get PDF
    The authors report the growth of needle-like high density quaternary Zn0.87Cd0.13Se0.98Te0.02nanotips on oxidized Si(100) substrate. It was found that average length and average diameter of the nanotips were 1.3 μm and 91 nm, respectively. It was also found that the as-grown ZnCdSeTe nanotips exhibit mixture of cubic zinc-blende and hexagonal wurtzite structures. Furthermore, it was found that the operation speeds of the fabricated ZnCdSeTe nanotip photodetector were fast with turn-on and turn-off time constants both less than 2 s

    A review of exposure assessment methods for epidemiological studies of health effects related to industrially contaminated sites

    Get PDF
    BACKGROUND: this paper is based upon work from COST Action ICSHNet. Health risks related to living close to industrially contaminated sites (ICSs) are a public concern. Toxicology-based risk assessment of single contaminants is the main approach to assess health risks, but epidemiological studies which investigate the relationships between exposure and health directly in the affected population have contributed important evidence. Limitations in exposure assessment have substantially contributed to uncertainty about associations found in epidemiological studies. OBJECTIVES: to examine exposure assessment methods that have been used in epidemiological studies on ICSs and to provide recommendations for improved exposure assessment in epidemiological studies by comparing exposure assessment methods in epidemiological studies and risk assessments. METHODS: after defining the multi-media framework of exposure related to ICSs, we discussed selected multi-media models applied in Europe. We provided an overview of exposure assessment in 54 epidemiological studies from a systematic review of hazardous waste sites; a systematic review of 41 epidemiological studies on incinerators and 52 additional studies on ICSs and health identified for this review. RESULTS: we identified 10 multi-media models used in Europe primarily for risk assessment. Recent models incorporated estimation of internal biomarker levels. Predictions of the models differ particularly for the routes ‘indoor air inhalation’ and ‘vegetable consumption’. Virtually all of the 54 hazardous waste studies used proximity indicators of exposure, based on municipality or zip code of residence (28 studies) or distance to a contaminated site (25 studies). One study used human biomonitoring. In virtually all epidemiological studies, actual land use was ignored. In the 52 additional studies on contaminated sites, proximity indicators were applied in 39 studies, air pollution dispersion modelling in 6 studies, and human biomonitoring in 9 studies. Exposure assessment in epidemiological studies on incinerators included indicators (presence of source in municipality and distance to the incinerator) and air dispersion modelling. Environmental multi-media modelling methods were not applied in any of the three groups of studies. CONCLUSIONS: recommendations for refined exposure assessment in epidemiological studies included the use of more sophisticated exposure metrics instead of simple proximity indicators where feasible, as distance from a source results in misclassification of exposure as it ignores key determinants of environmental fate and transport, source characteristics, land use, and human consumption behaviour. More validation studies using personal exposure or human biomonitoring are needed to assess misclassification of exposure. Exposure assessment should take more advantage of the detailed multi-media exposure assessment procedures developed for risk assessment. The use of indicators can be substantially improved by linking definition of zones of exposure to existing knowledge of extent of dispersion. Studies should incorporate more often land use and individual behaviour

    The CPLEAR detector at CERN

    Get PDF
    The CPLEAR collaboration has constructed a detector at CERN for an extensive programme of CP-, T- and CPT-symmetry studies using K0{\rm K}^0 and Kˉ0\bar{\rm K}^0 produced by the annihilation of pˉ\bar{\rm p}'s in a hydrogen gas target. The K0{\rm K}^0 and Kˉ0\bar{\rm K}^0 are identified by their companion products of the annihilation K±π{\rm K}^{\pm} \pi^{\mp} which are tracked with multiwire proportional chambers, drift chambers and streamer tubes. Particle identification is carried out with a liquid Cherenkov detector for fast separation of pions and kaons and with scintillators which allow the measurement of time of flight and energy loss. Photons are measured with a lead/gas sampling electromagnetic calorimeter. The required antiproton annihilation modes are selected by fast online processors using the tracking chamber and particle identification information. All the detectors are mounted in a 0.44 T uniform field of an axial solenoid of diameter 2 m and length 3.6 m to form a magnetic spectrometer capable of full on-line reconstruction and selection of events. The design, operating parameters and performance of the sub-detectors are described.

    Harmonized human biomonitoring in European children, teenagers and adults: EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014-2021)

    Get PDF
    As one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants of three age groups: (i) 3,576 children aged 6-12 years, (ii) 3,117 teenagers aged 12-18 years and (iii) 4,102 young adults aged 20-39 years. The participants were recruited between 2014 and 2021 in 11-12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Sigma (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability and will give leverage to national policy makers for the implementation of targeted measures
    corecore