154 research outputs found

    The contribution of starbursts and normal galaxies to infrared luminosity functions at z < 2

    Get PDF
    We present a parameter-less approach to predict the shape of the infrared (IR) luminosity function (LF) at redshifts z < 2. It requires no tuning and relies on only three observables: (1) the redshift evolution of the stellar mass function for star-forming galaxies, (2) the evolution of the specific star formation rate (sSFR) of main-sequence galaxies, and (3) the double-Gaussian decomposition of the sSFR-distribution at fixed stellar mass into a contribution (assumed redshift- and mass-invariant) from main-sequence and starburst activity. This self-consistent and simple framework provides a powerful tool for predicting cosmological observables: observed IR LFs are successfully matched at all z < 2, suggesting a constant or only weakly redshift-dependent contribution (8-14%) of starbursts to the star formation rate density. We separate the contributions of main-sequence and starburst activity to the global IR LF at all redshifts. The luminosity threshold above which the starburst component dominates the IR LF rises from log(LIR/Lsun) = 11.4 to 12.8 over 0 < z < 2, reflecting our assumed (1+z)^2.8-evolution of sSFR in main-sequence galaxies.Comment: 7 pages, 4 figures & 1 table. Accepted for publication in ApJL. Minor typos corrected in v2 following receipt of proof

    Morphological evolution and galactic sizes in the L-Galaxies SA model

    Get PDF
    In this work we update theL-Galaxiessemi-analytic model (SAM) to better follow thephysical processes responsible for the growth of bulges via disc instabilities (leading to pseudo-bulges) and mergers (leading to classical bulges). We address the former by considering thecontribution of both stellar and gaseous discs in the stability of the galaxy, and we update thelatter by including dissipation of energy in gas-rich mergers. Furthermore, we introduce angularmomentum losses during cooling and find that an accurate match to the observed correlationbetween stellar disc scale length and mass atz∼0.0requires that the gas loses 20%of its initialspecific angular momentum to the corresponding dark matter halo during the formation of thecold gas disc. We reproduce the observed trends between the stellar mass and specific angularmomentum for both disc- and bulge-dominated galaxies, with the former rotating faster thanthe latter of the same mass. We conclude that a two-component instability recipe provides amorphologically diverse galaxy sample which matches the observed fractional breakdown ofgalaxies into different morphological types. This recipe also enables us to obtain an excellent fitto the morphology-mass relation and stellar mass function of different galactic types. Finally, we find that energy dissipation during mergers reduces the merger remnant sizes and allowsus to match the observed mass-size relation for bulge-dominated system

    Looking ahead to the sky with the Square Kilometre Array: simulating flux densities & resolved radio morphologies of 0<z<2.50<z<2.5 star-forming galaxies

    Full text link
    SKA-MID surveys will be the first in the radio domain to achieve clearly sub-arcsecond resolution at high sensitivity over large areas, opening new science applications for galaxy evolution. To investigate the potential of these surveys, we create simulated SKA-MID images of a \sim0.04 deg2^{2} region of GOODS-North, constructed using multi-band HST imaging of 1723 real galaxies containing significant substructure at 0<z<2.50<z<2.5. We create images at the proposed depths of the band 2 wide, deep and ultradeep reference surveys (RMS = 1.0 μ\muJy, 0.2 μ\muJy and 0.05 μ\muJy over 1000 deg2^{2}, 10-30 deg2^{2} and 1 deg2^{2} respectively), using the telescope response of SKA-MID at 0.6" resolution. We quantify the star-formation rate - stellar mass space the surveys will probe, and asses to which stellar masses they will be complete. We measure galaxy flux density, half-light radius (R50R_{50}), concentration, Gini (distribution of flux), second-order moment of the brightest pixels (M20M_{20}) and asymmetry before and after simulation with the SKA response, to perform input-output tests as a function of depth, separating the effects of convolution and noise. We find that the recovery of Gini and asymmetry is more dependent on survey depth than for R50R_{50}, concentration and M20M_{20}. We also assess the relative ranking of parameters before and after observation with SKA-MID. R50R_{50} best retains its ranking, whilst asymmetries are poorly recovered. We confirm that the wide tier will be suited to the study of highly star-forming galaxies across different environments, whilst the ultradeep tier will enable detailed morphological analysis to lower SFRs.Comment: 25 pages, 14 figures, 1 table. Accepted for publication in MNRA

    No Evidence for Evolution in the Far-Infrared-Radio Correlation out to z ~ 2 in the eCDFS

    Get PDF
    We investigate the 70 um Far-Infrared Radio Correlation (FRC) of star-forming galaxies in the Extended Chandra Deep Field South (ECDFS) out to z > 2. We use 70 um data from the Far-Infrared Deep Extragalactic Legacy Survey (FIDEL), which comprises the most sensitive (~0.8 mJy rms) and extensive far-infrared deep field observations using MIPS on the Spitzer Space Telescope, and 1.4 GHz radio data (~8 uJy/beam rms) from the VLA. In order to quantify the evolution of the FRC we use both survival analysis and stacking techniques which we find give similar results. We also calculate the FRC using total infrared luminosity and rest-frame radio luminosity, qTIR, and find that qTIR is constant (within 0.22) over the redshift range 0 - 2. We see no evidence for evolution in the FRC at 70 um which is surprising given the many factors that are expected to change this ratio at high redshifts.Comment: 18 pages, 13 figures. Accepted for publication in Ap

    Astronomy below the survey threshold in the SKA era

    Get PDF
    Astronomy at or below the 'survey threshold' has expanded significantly since the publication of the original 'Science with the Square Kilometer Array' in 1999 and its update in 2004. The techniques in this regime may be broadly (but far from exclusively) defined as 'confusion' or 'P(D)' analyses (analyses of one-point statistics), and 'stacking', accounting for the flux-density distribution of noise-limited images co-added at the positions of objects detected/isolated in a different waveband. Here we discuss the relevant issues, present some examples of recent analyses, and consider some of the consequences for the design and use of surveys with the SKA and its pathfinders

    The Herschel view of the dominant mode of galaxy growth from z=4 to the present day

    Get PDF
    We present an analysis of the deepest Herschel images in four major extragalactic fields GOODS-North, GOODS-South, UDS and COSMOS obtained within the GOODS-Herschel and CANDELS-Herschel key programs. The picture provided by 10497 individual far-infrared detections is supplemented by the stacking analysis of a mass-complete sample of 62361 star-forming galaxies from the CANDELS-HST H band-selected catalogs and from two deep ground-based Ks band-selected catalogs in the GOODS-North and the COSMOS-wide fields, in order to obtain one of the most accurate and unbiased understanding to date of the stellar mass growth over the cosmic history. We show, for the first time, that stacking also provides a powerful tool to determine the dispersion of a physical correlation and describe our method called "scatter stacking" that may be easily generalized to other experiments. We demonstrate that galaxies of all masses from z=4 to 0 follow a universal scaling law, the so-called main sequence of star-forming galaxies. We find a universal close-to-linear slope of the logSFR-logM* relation with evidence for a flattening of the main sequence at high masses (log(M*/Msun) > 10.5) that becomes less prominent with increasing redshift and almost vanishes by z~2. This flattening may be due to the parallel stellar growth of quiescent bulges in star-forming galaxies. Within the main sequence, we measure a non varying SFR dispersion of 0.3 dex. The specific SFR (sSFR=SFR/M*) of star-forming galaxies is found to continuously increase from z=0 to 4. Finally we discuss the implications of our findings on the cosmic SFR history and show that more than 2/3 of present-day stars must have formed in a regime dominated by the main sequence mode. As a consequence we conclude that, although omnipresent in the distant Universe, galaxy mergers had little impact in shaping the global star formation history over the last 12.5 Gyr
    corecore