280 research outputs found

    Oxygen vacancies in strained SrTiO3_{3} thin films: formation enthalpy and manipulation

    Get PDF
    We report the enthalpy of oxygen vacancy formation in thin films of electron-doped SrTiO3_{3}, under different degrees of epitaxial stress. We demonstrate that both compressive and tensile strain decrease this energy at a very similar rate, and promote the formation of stable doubly ionized oxygen vacancies. Moreover, we also show that unintentional cationic vacancies introduced under typical growth conditions, produce a characteristic rotation pattern of TiO6_6 octahedra. The local concentration of oxygen vacancies can be modulated by an electric field with an AFM tip, changing not only the local electrical potential, but also producing a non-volatile mechanical response whose sign (up/down) can be reversed by the electric field.Comment: Physical Review B (accepted for publication

    Electron degeneracy and intrinsic magnetic properties of epitaxial Nb:SrTiO3_3 thin-films controlled by defects

    Get PDF
    We report thermoelectric power experiments in e-doped thin films of SrTiO3_3 (STO) which demonstrate that the electronic band degeneracy can be lifted through defect management during growth. We show that even small amounts of cationic vacancies, combined with epitaxial stress, produce a homogeneous tetragonal distortion of the films, resulting in a Kondo-like resistance upturn at low temperature, large anisotropic magnetoresistance, and non-linear Hall effect. Ab-initio calculations confirm a different occupation of each band depending on the degree of tetragonal distortion. The phenomenology reported in this paper for tetragonally distorted e-doped STO thin films, is similarto that observed in LaAlO3_3/STO interfaces and magnetic STO quantum wells.Comment: 5 pages, 5 figure

    Reduction of thermal conductivity in ferroelectric SrTiO3 thin films

    Get PDF
    Bulk SrTiO3 is a quantum paraelectric in which an antiferrodistortive distortion below approximate to 105 K and quantum fluctuations at low temperature preclude the stabilization of a long-range ferroelectric state. However, biaxial mechanical stress, impurity doping, and Sr nonstoichiometry, among other mechanisms, are able to stabilize a ferroelectric or relaxor ferroelectric state at room temperature, which develops into a longer-range ferroelectric state below 250 K. In this paper, we show that epitaxial SrTiO3 thin films grown under tensile strain on DyScO3 exhibit a large reduction of thermal conductivity, approximate to 60% of at room temperature, with respect to identical strain-free or compressed films. The thermal conductivity shows a further reduction below 250 K, a temperature concurrent with the peak in the dielectric constant [J. H. Haeni et al., Nature (London) 430, 758 (2004)]. These results suggest that strain gradients in the relaxor and ferroelectric phase of SrTiO3 are very effective phonon scatterers, limiting the thermal transport in this material

    The biocompatibility of titanium in a buffer solution: compared effects of a thin film of TiO2 deposited by MOCVD and of collagen deposited from a gel

    Get PDF
    This study aims at evaluating the biocompatibility of titanium surfaces modified according two different ways: (i) deposition of a bio-inert, thin film of rutile TiO2 by chemical vapour deposition (MOCVD), and (ii) biochemical treatment with collagen gel, in order to obtain a bio-interactive coating. Behind the comparison is the idea that either the bio-inert or the bio-active coating has specific advantages when applied to implant treatment, such as the low price of the collagen treatment for instance. The stability in buffer solution was evaluated by open circuit potential (OCP) for medium time and cyclic voltametry. The OCP stabilized after 5104 min for all the specimens except the collagen treated sample which presented a stable OCP from the first minutes. MOCVD treated samples stabilized to more electropositive values. Numeric results were statistically analysed to obtain the regression equations for long time predictable evolution. The corrosion parameters determined from cyclic curves revealed that the MOCVD treatment is an efficient way to improve corrosion resistance. Human dermal fibroblasts were selected for cell culture tests, taking into account that these cells are present in all bio-interfaces, being the main cellular type of connective tissue. The cells grew on either type of surface without phenotype modification. From the reduction of yellow, water-soluble 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT cytotoxicity test), MOCVD treated samples offer better viability than mechanically polished Ti and collagen treated samples as well. Cell spreading, as evaluated from microscope images processed by the program Sigma Scan, showed also enhancement upon surface modification. Depending on the experimental conditions, MOCVD deposited TiO2 exhibits different nanostructures that may influence biological behaviour. The results demonstrate the capacity of integration in simulated physiologic liquids for an implant pretreated by either method

    Impact of human CA8 on thermal antinociception in relation to morphine equivalence in mice

    Get PDF
    Recently, we showed that murine dorsal root ganglion (DRG) Car8 expression is a cis-regulated eQTL that determines analgesic responses. In this report, we show that transduction through sciatic nerve injection of DRG with human wild-type carbonic anhydrase-8 using adeno-associated virus viral particles (AAV8-V5-CA8WT) produces analgesia in naive male C57BL/6J mice and antihyperalgesia after carrageenan treatment. A peak mean increase of about 4 s in thermal hindpaw withdrawal latency equaled increases in thermal withdrawal latency produced by 10 mg/kg intraperitoneal morphine in these mice. Allometric conversion of this intraperitoneal morphine dose in mice equals an oral morphine dose of about 146 mg in a 60-kg adult. Our work quantifies for the first time analgesia and antihyperalgesia in an inflammatory pain model after DRG transduction by CA8 gene therapy

    An aberrant NOTCH2-BCR signaling axis in B cells from patients with chronic GVHD

    Get PDF
    B-cell receptor (BCR)-activated B cells contribute to pathogenesis in chronic graft-versus-host disease (cGVHD), a condition manifested by both B-cell autoreactivity and immune deficiency. We hypothesized that constitutive BCR activation precluded functional B-cell maturation in cGVHD. To address this, we examined BCR-NOTCH2 synergy because NOTCH has been shown to increase BCR responsiveness in normal mouse B cells. We conducted ex vivo activation and signaling assays of 30 primary samples from hematopoietic stem cell transplantation patients with and without cGVHD. Consistent with a molecular link between pathways, we found that BCR-NOTCH activation significantly increased the proximal BCR adapter protein BLNK. BCR-NOTCH activation also enabled persistent NOTCH2 surface expression, suggesting a positive feedback loop. Specific NOTCH2 blockade eliminated NOTCH-BCR activation and significantly altered NOTCH downstream targets and B-cell maturation/effector molecules. Examination of the molecular underpinnings of this “NOTCH2-BCR axis” in cGVHD revealed imbalanced expression of the transcription factors IRF4 and IRF8, each critical to B-cell differentiation and fate. All-trans retinoic acid (ATRA) increased IRF4 expression, restored the IRF4-to-IRF8 ratio, abrogated BCR-NOTCH hyperactivation, and reduced NOTCH2 expression in cGVHD B cells without compromising viability. ATRA-treated cGVHD B cells had elevated TLR9 and PAX5, but not BLIMP1 (a gene-expression pattern associated with mature follicular B cells) and also attained increased cytosine guanine dinucleotide responsiveness. Together, we reveal a mechanistic link between NOTCH2 activation and robust BCR responses to otherwise suboptimal amounts of surrogate antigen. Our findings suggest that peripheral B cells in cGVHD patients can be pharmacologically directed from hyperactivation toward maturity

    Bone Marrow B cell Precursor Number after Allogeneic Stem Cell Transplantation and GVHD Development

    Get PDF
    Patients without chronic graft-versus-host disease (cGVHD) have robust B cell reconstitution and are able to maintain B cell homeostasis after allogeneic hematopoietic stem cell transplantation (HSCT). To determine whether B lymphopoiesis differs before cGVHD develops, we examined bone marrow (BM) biopsies for terminal deoxynucleotidyl transferase (TdT) and PAX5 immunostaining early post-HSCTat day 30 when all patients have been shown to have high B cell activating factor (BAFF) levels. We found significantly greater numbers of BM B cell precursors in patients who did not develop cGVHD compared with those who developed cGVHD (median = 44 vs 2 cells/high powered field [hpf]; respectively; P < .001). Importantly, a significant increase in precursor B cells was maintained when patients receiving high-dose steroid therapy were excluded (median = 49 vs 20 cells/hpf; P =.017). Thus, we demonstrate the association of BM B cell production capacity in human GVHD development. Increased BM precursor B cell number may serve to predict good clinical outcome after HSCT

    On the Convergence of Kergin and Hakopian Interpolants at Leja Sequences for the Disk

    Full text link
    We prove that Kergin interpolation polynomials and Hakopian interpolation polynomials at the points of a Leja sequence for the unit disk DD of a sufficiently smooth function ff in a neighbourhood of DD converge uniformly to ff on DD. Moreover, when ff is CC^\infty on DD, all the derivatives of the interpolation polynomials converge uniformly to the corresponding derivatives of ff

    Academic Cancer Center Phase I Program Development

    Full text link
    Multiple factors critical to the effectiveness of academic phase I cancer programs were assessed among 16 academic centers in the U.S. Successful cancer centers were defined as having broad phase I and I/II clinical trial portfolios, multiple investigator‐initiated studies, and correlative science. The most significant elements were institutional philanthropic support, experienced clinical research managers, robust institutional basic research, institutional administrative efforts to reduce bureaucratic regulatory delays, phase I navigators to inform patients and physicians of new studies, and a large cancer center patient base. New programs may benefit from a separate stand‐alone operation, but mature phase I programs work well when many of the activities are transferred to disease‐oriented teams. The metrics may be useful as a rubric for new and established academic phase I programs.This commentary assesses the factors necessary for the effectiveness of academic phase I cancer programs. The metrics presented here may be useful as a rubric for new and established programs.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/139928/1/onco12106-sup-0001-suppinfo1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139928/2/onco12106.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139928/3/onco12106-sup-0002-suppinfo2.pd
    corecore