92 research outputs found
Web Content Mining for Information on Information Scientists
This paper presents a search system for information on scientists which was implemented prototypically for the area of information science, employing Web Content Mining techniques. The sources that are used in the implemented approach are online publication services and personal homepages of scientists. The system contains wrappers for querying the publication services and information extraction from their result pages, as well as methods for information extraction from homepages, which are based on heuristics concerning structure and composition of the pages. Moreover a specialised search technique for searching for personal homepages of information scientists was developed
Recommended from our members
GEOPOLL - Integrate Cartographic Questions in Web Forms, Polls or Surveys
Most of the web forms, polls or surveys are composed with classical input fields (check boxes, radio buttons, select lists, etc.) and a lot of standards web forms builders or services (e.g. Typeform, WuFoo, Google Forms, Survey Monkey, etc.) help to build and deploy them. Nowadays, offering a text area to catch a ZIP code or a select list to point out a country remains the best way to explicitly collect geospatial data. But what about mapping interfaces to integrate cartographic questions and/or cartographic answers as a more suitable solution? How to let formâs respondents indicate in which area(s) they engage in certain activities? The only way to solve these issues is by coding it yourself. This paper shows the design and technical problematic and try to give some solutions to build an efficient UX for the respondents and a standard answers treatment for the data analysts. This paper will also highlight the capacities of open source JavaScript library like OpenLayers to build the solution. Our interface was tested by the cities of Lausanne and Pully (Switzerland) and thousands of people answered to these « cartographic forms » on mobile and desktop. We would like to share some good practice and lessons learned
Word frequency in fast priming: Evidence for immediate cognitive control of eye movements during reading
Numerous studies have demonstrated effects of word frequency on eye movements during reading, but the precise timing of this influence has remained unclear. The fast priming paradigm (Sereno & Rayner, 1992) was previously used to study influences of related versus unrelated primes on the target word. Here, we used this procedure to investigate whether the frequency of the prime word has a direct influence on eye movements during reading when the prime-target relation is not manipulated. We found that with average prime intervals of 32 ms readers made longer single fixation durations on the target word in the low than in the high frequency prime condition. Distributional analyses demonstrated that the effect of prime frequency on single fixation durations occurred very early, supporting theories of immediate cognitive control of eye movements. Finding prime frequency effects only 207 ms after visibility of the prime and for prime durations of 32 ms yields new time constraints for cognitive processes controlling eye movements during reading. Our variant of the fast priming paradigm provides a new approach to test early influences of word processing on eye movement control during reading
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger
Observatory and is used to detect the radio emission of cosmic-ray air showers.
These observations are compared to the data of the surface detector stations of
the Observatory, which provide well-calibrated information on the cosmic-ray
energies and arrival directions. The response of the radio stations in the 30
to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of
the incoming electric field. For the latter, the energy deposit per area is
determined from the radio pulses at each observer position and is interpolated
using a two-dimensional function that takes into account signal asymmetries due
to interference between the geomagnetic and charge-excess emission components.
The spatial integral over the signal distribution gives a direct measurement of
the energy transferred from the primary cosmic ray into radio emission in the
AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air
shower arriving perpendicularly to the geomagnetic field. This radiation energy
-- corrected for geometrical effects -- is used as a cosmic-ray energy
estimator. Performing an absolute energy calibration against the
surface-detector information, we observe that this radio-energy estimator
scales quadratically with the cosmic-ray energy as expected for coherent
emission. We find an energy resolution of the radio reconstruction of 22% for
the data set and 17% for a high-quality subset containing only events with at
least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy
We measure the energy emitted by extensive air showers in the form of radio
emission in the frequency range from 30 to 80 MHz. Exploiting the accurate
energy scale of the Pierre Auger Observatory, we obtain a radiation energy of
15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV
arriving perpendicularly to a geomagnetic field of 0.24 G, scaling
quadratically with the cosmic-ray energy. A comparison with predictions from
state-of-the-art first-principle calculations shows agreement with our
measurement. The radiation energy provides direct access to the calorimetric
energy in the electromagnetic cascade of extensive air showers. Comparison with
our result thus allows the direct calibration of any cosmic-ray radio detector
against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI.
Supplemental material in the ancillary file
Multiple Scenario Generation of Subsurface Models:Consistent Integration of Information from Geophysical and Geological Data throuh Combination of Probabilistic Inverse Problem Theory and Geostatistics
Neutrinos with energies above 1017 eV are detectable with the Surface Detector Array of the Pierre Auger Observatory. The identification is efficiently performed for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for Earth-skimming \u3c4 neutrinos with nearly tangential trajectories relative to the Earth. No neutrino candidates were found in 3c 14.7 years of data taken up to 31 August 2018. This leads to restrictive upper bounds on their flux. The 90% C.L. single-flavor limit to the diffuse flux of ultra-high-energy neutrinos with an E\u3bd-2 spectrum in the energy range 1.0
7 1017 eV -2.5
7 1019 eV is E2 dN\u3bd/dE\u3bd < 4.4
7 10-9 GeV cm-2 s-1 sr-1, placing strong constraints on several models of neutrino production at EeV energies and on the properties of the sources of ultra-high-energy cosmic rays
- âŠ