7 research outputs found

    A sock for foot-drop: A preliminary study on two chronic stroke patients

    Get PDF
    Background: Foot-drop is a common motor impairment of chronic stroke patients, which may be addressed with an ankle foot orthosis. Although there is reasonable evidence of effectiveness for ankle foot orthoses, user compliance is sometimes poor. This study investigated a new alternative to the ankle foot orthosis, the dorsiflex sock. Case description and methods: The dorsiflex sock was evaluated using an A-B single case experimental design. Two community-dwelling, chronic stroke patients with foot-drop participated in this study. Measures were selected to span the International Classification of Function, Disability and Health domains and user views on the dorsiflex sock were also collected. Findings and outcomes: The dorsiflex sock was not effective in improving participants’ walking symmetry, speed or energy expenditure. Participant 1 showed improvement in the distance he could walk in 6 min when using the dorsiflex sock, but this was in keeping with a general improvement trend over the course of this study. However, both participants viewed the dorsiflex sock positively and reported a positive effect on their walking. Conclusion: Despite positive user perceptions, the study found no clear evidence that dorsiflex sock is effective in improving foot-drop. Clinical relevance Although the dorsiflex sock offers an attractive alternative to an ankle foot orthosis, the case studies found no clear evidence of its efficacy. Clinicians should view this device with caution until further research becomes availabl

    Functional electrical stimulation versus ankle foot orthoses for foot-drop: a meta-analysis of orthotic effects

    Get PDF
    Objective: To compare the effects on walking of Functional Electrical Stimulation (FES) and Ankle Foot Orthoses (AFO) for foot-drop of central neurological origin, assessed in terms of unassisted walking behaviours compared with assisted walking following a period of use (combined-orthotic effects). Data Sources: MEDLINE, AMED, CINAHL, Cochrane Central Register of Controlled Trials, Scopus, REHABDATA, PEDro, NIHR Centre for Reviews and Dissemination and clinicaltrials.gov. plus reference list, journal, author and citation searches. Study Selection: English language comparative Randomised Controlled Trials (RCTs). Data Synthesis: Seven RCTs were eligible for inclusion. Two of these reported different results from the same trial and another two reported results from different follow up periods so were combined; resulting in five synthesised trials with 815 stroke participants. Meta-analyses of data from the final assessment in each study and three overlapping time-points showed comparable improvements in walking speed over ten metres (p=0.04-0.95), functional exercise capacity (p=0.10-0.31), timed up-and-go (p=0.812 and p=0.539) and perceived mobility (p=0.80) for both interventions. Conclusion: Data suggest that, in contrast to assumptions that predict FES superiority, AFOs have equally positive combined-orthotic effects as FES on key walking measures for foot-drop caused by stroke. However, further long-term, high-quality RCTs are required. These should focus on measuring the mechanisms-of-action; whether there is translation of improvements in impairment to function, plus detailed reporting of the devices used across diagnoses. Only then can robust clinical recommendations be made

    Functional electrical stimulation and ankle foot orthoses provide equivalent therapeutic effects on foot drop: A meta-analysis providing direction for future research

    Get PDF
    Objective: To compare the randomized controlled trial evidence for therapeutic effects on walking of functional electrical stimulation and ankle foot orthoses for foot drop caused by central nervous system conditions. Data sources: MEDLINE, CINAHL, Cochrane Central Register of Controlled Trials, REHABDATA, PEDro, NIHR Centre for Reviews and Dissemination, Scopus and clinicaltrials.gov. Study selection: One reviewer screened titles/abstracts. Two independent reviewers then screened the full articles. Data extraction: One reviewer extracted data, another screened for accuracy. Risk of bias was assessed by 2 independent reviewers using the Cochrane Risk of Bias Tool. Data synthesis: Eight papers were eligible; 7 involving participants with stroke and 1 involving participants with cerebral palsy. Two papes reporting different measures from the same trial were grouped, resulting in 7 synthesized randomized controlled trials (n= 464). Meta-analysis of walking speed at final assessment (p = 0.46), for stroke participants (p = 0.54) and after 4–6 weeks’ use (p = 0.49) showed equal improvement for both devices. Conclusion: Functional electrical stimulation and ankle foot orthoses have an equally positive therapeutic effect on walking speed in non-progressive central nervous system diagnoses. The current randomized controlled trial evidence base does not show whether this improvement translates into the user’s own environment or reveal the mechanisms that achieve that change. Future studies should focus on measuring activity, muscle activity and gait kinematics. They should also report specific device details, capture sustained therapeutic effects and involve a variety of central nervous system diagnoses

    The design, development and evaluation of an array-based FES system with automated setup for the correction of drop foot

    Get PDF
    Functional electrical stimulation has been shown to be a safe and effective means of correcting drop foot of central neurological origin. However, despite recent technological advances, the set-up of surface stimulators remains a challenge for many users with drop foot. The automation of the setup process through the use of electrode arrays has been proposed as a way to address this problem. This paper describes a series of research and clinical studies which have led to the first demonstration of unsupervised automated setup of an electrode-array based drop foot stimulator. Finally, future research plans are discussed

    A review of the design and clinical evaluation of the ShefStim array-based functional electrical stimulation system

    Get PDF
    Functional electrical stimulation has been shown to be a safe and effective means of correcting foot 12 drop of central neurological origin. Current surface-based devices typically consist of a single channel stimulator, 13 a sensor for determining gait phase and a cuff, within which is housed the anode and cathode. The cuff-mounted 14 electrode design reduces the likelihood of large errors in electrode placement, but the user is still fully responsible 15 for selecting the correct stimulation level each time the system is donned. Researchers have investigated different 16 approaches to automating aspects of setup and/or use, including recent promising work based on iterative learning 17 techniques. This paper reports on the design and clinical evaluation of an electrode array-based FES system for 18 the correction of drop foot, ShefStim. The paper reviews the design process from proof of concept lab-based study, 19 through modelling of the array geometry and interface layer to array search algorithm development. Finally, the 20 paper summarises two clinical studies involving patients with drop foot. The results suggest that the ShefStim 21 system with automated setup produces results which are comparable with clinician setup of conventional systems. 22 Further, the final study demonstrated that patients can use the system without clinical supervision. When used 23 unsupervised, setup time was 14 minutes (9 minutes for automated search plus 5 minutes for donning the 24 equipment), although this figure could be reduced significantly with relatively minor changes to the design

    Team Based Learning in Nursing and Midwifery Higher Education; A Systematic Review of the Evidence for Change

    No full text
    Review Aim: The aim of this study is to review the evidence in relation to the experiences and outcomes of students on nursing and/or midwifery higher education programmes, who experience team based learning. Review Objectives: To examine the relationship between team based learning and attainment for nursing and midwifery students in professional higher education. To examine the relationship between team based learning and student satisfaction for nurses and midwifery students in higher education. To identify and report examples of good practice in the implementation of team based learning in Nursing and Midwifery higher education. Design: A systematic Review of the literature was undertaken. The population were nurses and midwives studying on higher education pre and post registration professional programmes. The intervention was learning and teaching activities based on a team-based learning approach. Data sources included CINAHL and MEDLINE. ERIC and Index to Theses were also searched. Review methods: International research papers published in English between 2011 and 2017 that met the inclusion criteria were included in the study. Papers that met the criteria were subjected to quality appraisal and agreement amongst authors for inclusion in the review. Results: A total of sixteen papers were reviewed and four themes emerged for discussion. These were Student Engagement, Student Satisfaction, Attainment and Practice Development and Transformational Teaching and Learning. Conclusions: There is a tentative, though growing body of evidence to support TBL as a strategy that can impact on student engagement, student satisfaction, attainment, practice development and transformative teaching and learning. The literature indicates that implementing TBL within the curriculum is not without challenge and requires a sustained and structured approach. Staff and students need to understand the processes involved, and why they should be adhered to, in the pursuit of enhanced student experiences and outcomes for nurses and midwives in Higher Education

    Feasibility study of a take-home array-based functional electrical stimulation system with automated setup for current functional electrical stimulation users with foot-drop

    Get PDF
    Objective : To investigate the feasibility of unsupervised community use of an array-based automated setup functional electrical stimulator for current foot-drop functional electrical stimulation (FES) users. Design : Feasibility study. Setting : Gait laboratory and community use. Participants : Participants (N=7) with diagnosis of unilateral foot-drop of central neurologic origin (greater than 6mo) who were regular users of a foot-drop FES system (greater than 3mo). Intervention : Array-based automated setup FES system for foot-drop (ShefStim). Main Outcome Measures : Logged usage, logged automated setup times for the array-based automated setup FES system and diary recording of problems experienced, all collected in the community environment. Walking speed, ankle angles at initial contact, foot clearance during swing, and the Quebec User Evaluation of Satisfaction with Assistive Technology version 2.0 (QUEST version 2.0) questionnaire, all collected in the gait laboratory. Results : All participants were able to use the array-based automated setup FES system. Total setup time took longer than participants' own FES systems, and automated setup time was longer than in a previous study of a similar system. Some problems were experienced, but overall, participants were as satisfied with this system as their own FES system. The increase in walking speed (N=7) relative to no stimulation was comparable between both systems, and appropriate ankle angles at initial contact (N=7) and foot clearance during swing (n=5) were greater with the array-based automated setup FES system. Conclusions : This study demonstrates that an array-based automated setup FES system for foot-drop can be successfully used unsupervised. Despite setup's taking longer and some problems, users are satisfied with the system and it would appear as effective, if not better, at addressing the foot-drop impairment. Further product development of this unique system, followed by a larger-scale and longer-term study, is required before firm conclusions about its efficacy can be reached.</p
    corecore