87 research outputs found

    The WiggleZ Dark Energy Survey: final data release and cosmological results

    Get PDF
    This paper presents cosmological results from the final data release of the WiggleZ Dark Energy Survey. We perform full analyses of different cosmological models using the WiggleZ power spectra measured at z = 0.22, 0.41, 0.60, and 0.78, combined with other cosmological data sets. The limiting factor in this analysis is the theoretical modeling of the galaxy power spectrum, including nonlinearities, galaxy bias, and redshift-space distortions. In this paper we assess several different methods for modeling the theoretical power spectrum, testing them against the Gigaparsec WiggleZ simulations (GiggleZ). We fit for a base set of six cosmological parameters, {Omega(b)h(2), Omega(CDM)h(2); H-0, tau, A(s), n(s)}, and five supplementary parameters {n(run), r, w, Omega(k), Sigma m(v)}. In combination with the cosmic microwave background, our results are consistent with the Lambda CDM concordance cosmology, with a measurement of the matter density of Omega(m) = 0.29 +/- 0.016 and amplitude of fluctuations sigma(8) = 0.825 +/- 0.017. Using WiggleZ data with cosmic microwave background and other distance and matter power spectra data, we find no evidence for any of the extension parameters being inconsistent with their Lambda CDM model values. The power spectra data and theoretical modeling tools are available for use as a module for CosmoMC, which we here make publicly available at http://smp.uq.edu.au/wigglez-data. We also release the data and random catalogs used to construct the baryon acoustic oscillation correlation function

    The WiggleZ Dark Energy Survey: probing the epoch of radiation domination using large-scale structure

    Get PDF
    We place the most robust constraint to date on the scale of the turnover in the cosmological matter power spectrum using data from the WiggleZ Dark Energy Survey. We find this feature to lie at a scale of k 0 = 0.0160 +0.0035 -0.0041 (h Mpc -1 ) (68 per cent confidence) for an effective redshift of z eff = 0.62 and obtain from this the first ever turnover-derived distance and cosmology constraints: a measure of the cosmic distance-redshift relation in units of the horizon scale at the redshift of radiation-matter equality (r H ) ofDV(z eff = 0.62)/r H = 18.3 +6.3 -3.3 and, assuming a prior on the number of extra relativistic degrees of freedom N eff =3, constraints on the cosmological matter density parameter Ω M h 2 = 0.136 +0.026 -0.052 and on the redshift of matter-radiation equality z eq = 3274 +631 -1260 .We stress that these results are obtained within the theoretical framework of Gaussian primordial fluctuations and linear large-scale bias. With this caveat, all results are in excellent agreement with the predictions of standard ΛCDM models. Our constraints on the logarithmic slope of the power spectrum on scales larger than the turnover are bounded in the lower limit with values only as low as -1 allowed, with the prediction of P(k) ∝ k from standard ΛCDM models easily accommodated by our results. Finally, we generate forecasts to estimate the achievable precision of future surveys at constraining k 0 , ω; M h 2 , z eq and N eff .We find that the Baryon Oscillation Spectroscopic Survey should substantially improve upon the WiggleZ turnover constraint, reaching a precision on k0 of ±9 per cent (68 per cent confidence), translating to precisions on ω M h 2 and z eq of±10 per cent (assuming a prior N eff =3) and onNeff of +78 -56 per cent (assuming a priorω M h 2 = 0.135). This represents sufficient precision to sharpen the constraints on N eff from WMAP, particularly in its upper limit. For Euclid, we find corresponding attainable precisions on (k 0 , ω M h 2 , N eff ) of (3, 4, +17 -21 ) per cent. This represents a precision approaching our forecasts for the Planck Surveyor. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society

    The WiggleZ Dark Energy Survey: Cosmological neutrino mass constraint from blue high-redshift galaxies

    Get PDF
    The absolute neutrino mass scale is currently unknown, but can be constrained from cosmology. The WiggleZ high redshift star-forming blue galaxy sample is less sensitive to systematics from non-linear structure formation, redshift-space distortions and galaxy bias than previous surveys. We obtain a upper limit on the sum of neutrino masses of 0.60eV (95% confidence) for WiggleZ+Wilkinson Microwave Anisotropy Probe. Combining with priors on the Hubble Parameter and the baryon acoustic oscillation scale gives an upper limit of 0.29eV, which is the strongest neutrino mass constraint derived from spectroscopic galaxy redshift surveys.Comment: Matches version accepted by PR

    Face perception enhances insula and motor network reactivity in Tourette syndrome

    Get PDF
    Tourette syndrome is a neurodevelopmental disorder, characterised by motor and phonic tics. Tics are typically experienced as avolitional, compulsive, and associated with premonitory urges. They are exacerbated by stress and can be triggered by external stimuli, including social cues like the actions and facial expressions of others. Importantly, emotional social stimuli, with angry facial stimuli potentially the most potent social threat cue, also trigger behavioural reactions in healthy individuals, suggesting that such mechanisms may be particularly sensitive in people with Tourette syndrome. Twenty-one participants with Tourette syndrome and 21 healthy controls underwent functional magnetic resonance imaging while viewing faces wearing either neutral or angry expressions to quantify group differences in neural activity associated with processing social information. Simultaneous video recordings of participants during neuroimaging enabled us to model confounding effects of tics on task-related responses to the processing of faces. In both Tourette syndrome and control participants, face stimuli evoked enhanced activation within canonical face perception regions, including the occipital face area and fusiform face area. However, the Tourette syndrome group showed additional responses within the anterior insula to both neutral and angry faces. Functional connectivity during face viewing was then examined in a series of psychophysiological interactions. In Tourette syndrome participants, the insula showed functional connectivity with a set of cortical regions previously implicated in tic generation: the pre-supplementary motor area, premotor cortex, primary motor cortex, and the putamen. Furthermore, insula functional connectivity with the globus pallidus and thalamus varied in proportion to tic severity, while supplementary motor area connectivity varied in proportion to premonitory sensations, with insula connectivity to these regions increasing to a greater extent in patients with worse symptom severity. In addition, the occipital face area showed increased functional connectivity in Tourette syndrome participants with posterior cortical regions, including primary somatosensory cortex, and occipital face area connectivity with primary somatosensory and primary motor cortices varied in proportion to tic severity. There were no significant psychophysiological interactions in controls. These findings highlight a potential mechanism in Tourette syndrome through which heightened representation within insular cortex of embodied affective social information may impact the reactivity of subcortical motor pathways, supporting programmed motor actions that are causally implicated in tic generation. Medicinal and psychological therapies that focus on reducing insular hyper-reactivity to social stimuli may have potential benefit for tic reduction in people with Tourette syndrome

    Don’t make me angry, you wouldn’t like me when I’m angry: volitional choices to act or inhibit are modulated by subliminal perception of emotional faces

    Get PDF
    Volitional action and self-control—feelings of acting according to one’s own intentions and in being control of one’s own actions—are fundamental aspects of human conscious experience. However, it is unknown whether high-level cognitive control mechanisms are affected by socially salient but nonconscious emotional cues. In this study, we manipulated free choice decisions to act or withhold an action by subliminally presenting emotional faces: In a novel version of the Go/NoGo paradigm, participants made speeded button-press responses to Go targets, withheld responses to NoGo targets, and made spontaneous, free choices to execute or withhold the response for Choice targets. Before each target, we presented emotional faces, backwards masked to render them nonconscious. In Intentional trials, subliminal angry faces made participants more likely to voluntarily withhold the action, whereas fearful and happy faces had no effects. In a second experiment, the faces were made supraliminal, which eliminated the effects of angry faces on volitional choices. A third experiment measured neural correlates of the effects of subliminal angry faces on intentional choice using EEG. After replicating the behavioural results found in Experiment 1, we identified a frontal-midline theta component—associated with cognitive control processes—which is present for volitional decisions, and is modulated by subliminal angry faces. This suggests a mechanism whereby subliminally presented “threat” stimuli affect conscious control processes. In summary, nonconscious perception of angry faces increases choices to inhibit, and subliminal influences on volitional action are deep seated and ecologically embedded

    Galaxy And Mass Assembly (GAMA): stellar mass estimates

    Get PDF
    This paper describes the first catalogue of photometrically derived stellar mass estimates for intermediate-redshift (z < 0.65; median z= 0.2) galaxies in the Galaxy And Mass Assembly (GAMA) spectroscopic redshift survey. These masses, as well as the full set of ancillary stellar population parameters, will be made public as part of GAMA data release 2. Although the GAMA database does include near-infrared (NIR) photometry, we show that the quality of our stellar population synthesis fits is significantly poorer when these NIR data are included. Further, for a large fraction of galaxies, the stellar population parameters inferred from the optical-plus-NIR photometry are formally inconsistent with those inferred from the optical data alone. This may indicate problems in our stellar population library, or NIR data issues, or both; these issues will be addressed for future versions of the catalogue. For now, we have chosen to base our stellar mass estimates on optical photometry only. In light of our decision to ignore the available NIR data, we examine how well stellar mass can be constrained based on optical data alone. We use generic properties of stellar population synthesis models to demonstrate that restframe colour alone is in principle a very good estimator of stellar mass-to-light ratio, M*/Li. Further, we use the observed relation between restframe (g−i) and M*/Li for real GAMA galaxies to argue that, modulo uncertainties in the stellar evolution models themselves, (g−i) colour can in practice be used to estimate M*/Li to an accuracy of ≲0.1 dex (1σ). This ‘empirically calibrated' (g−i)-M*/Li relation offers a simple and transparent means for estimating galaxies' stellar masses based on minimal data, and so provides a solid basis for other surveys to compare their results to z≲0.4 measurements from GAM
    corecore