15 research outputs found
SÃndrome de Asperger: relato de caso: Asperger syndrome: case report
O presente estudo tem como objetivo o relato de caso de uma criança com SÃndrome de Asperger, atendida no ambulatório de Saúde Mental em Chalé, Minas Gerais, comparando-a com as caracterÃsticas descritas na literatura. A sÃndrome é caracterizada por desvios e anormalidades em três amplos aspectos do desenvolvimento: interação social, uso da linguagem para a comunicação e certas caracterÃsticas repetitivas ou perserverativas sobre um número limitado, porém intenso, de interesses. Os sinais e sintomas podem aparecer nos primeiros anos de vida da criança, mas raramente são valorizados pelos pais como algo negativo, especialmente se as manifestações forem leves. O acompanhamento e tratamento fonoaudiólogo nesses casos, é de suma importância para o desenvolvimento o mais próximo possÃvel do considerado formal na linguagem e na comunicação destes indivÃduos. Vivências clÃnicas mostram as estratégias que podem ser sugeridas para estas crianças, lembrando que cada criança possui suas particularidades, que devem sempre ser levadas em consideração
Hipertensão arterial primária e o impacto na sociedade: uma revisão de literatura: Primary arterial Hypertension and the impact on society: a literature review
As doenças cardiovasculares apresentam papel indiscutÃvel na morbidade e mortalidade do mundo ocidental, bem como os fatores de risco que predispõem o seu desenvolvimento. A hipertensão é uma doença crônica que requer um bom controle, desde uma boa adesão a uma dieta saudável, associada à prática de exercÃcios fÃsicos, prevenindo assim consequências desta doença de base. A implementação de medidas preventivas é um desafio para profissionais e gestores de saúde. A prevenção primária e a detecção precoce, bem como o tratamento adequado são as formas mais efetivas de evitar as complicações desta doença, e por isso, devem ser metas prioritárias dos profissionais de saúde. O presente estudo tem como objetivo discorrer sobre a importância da conscientização e os impactos que a doença causa na sociedade, enfatizando que muitos fatores de risco para hipertensão são modificáveis, o que torna a hipertensão evitável na maioria dos casos ou com alta probabilidade de controle, se já presente, através de uma Revisão Integrativa da Literatura
Deoxyribonucleic Acid Encoded and Size-Defined π-Stacking of Perylene Diimides.
Funder: University of CambridgeNatural photosystems use protein scaffolds to control intermolecular interactions that enable exciton flow, charge generation, and long-range charge separation. In contrast, there is limited structural control in current organic electronic devices such as OLEDs and solar cells. We report here the DNA-encoded assembly of π-conjugated perylene diimides (PDIs) with deterministic control over the number of electronically coupled molecules. The PDIs are integrated within DNA chains using phosphoramidite coupling chemistry, allowing selection of the DNA sequence to either side, and specification of intermolecular DNA hybridization. In this way, we have developed a "toolbox" for construction of any stacking sequence of these semiconducting molecules. We have discovered that we need to use a full hierarchy of interactions: DNA guides the semiconductors into specified close proximity, hydrophobic-hydrophilic differentiation drives aggregation of the semiconductor moieties, and local geometry and electrostatic interactions define intermolecular positioning. As a result, the PDIs pack to give substantial intermolecular π wave function overlap, leading to an evolution of singlet excited states from localized excitons in the PDI monomer to excimers with wave functions delocalized over all five PDIs in the pentamer. This is accompanied by a change in the dominant triplet forming mechanism from localized spin-orbit charge transfer mediated intersystem crossing for the monomer toward a delocalized excimer process for the pentamer. Our modular DNA-based assembly reveals real opportunities for the rapid development of bespoke semiconductor architectures with molecule-by-molecule precision.ERC Horizon 2020 (grant agreement No 670405 and No 803326)
EPSRC Tier-2 capital grant EP/P020259/1.
Winton Advanced Research Programme for the Physics of Sustainability. Simons Foundation (Grant 601946).
Swedish research council, Vetenskapsrådet 2018-0023
A História da Alimentação: balizas historiográficas
Os M. pretenderam traçar um quadro da História da Alimentação, não como um novo ramo epistemológico da disciplina, mas como um campo em desenvolvimento de práticas e atividades especializadas, incluindo pesquisa, formação, publicações, associações, encontros acadêmicos, etc. Um breve relato das condições em que tal campo se assentou faz-se preceder de um panorama dos estudos de alimentação e temas correia tos, em geral, segundo cinco abardagens Ia biológica, a econômica, a social, a cultural e a filosófica!, assim como da identificação das contribuições mais relevantes da Antropologia, Arqueologia, Sociologia e Geografia. A fim de comentar a multiforme e volumosa bibliografia histórica, foi ela organizada segundo critérios morfológicos. A seguir, alguns tópicos importantes mereceram tratamento à parte: a fome, o alimento e o domÃnio religioso, as descobertas européias e a difusão mundial de alimentos, gosto e gastronomia. O artigo se encerra com um rápido balanço crÃtico da historiografia brasileira sobre o tema
Pd-catalysed synthesis of functionalised adenosine analogues and their characterisation as base-discriminating fluorescent probes
A novel class of 7-modified 7-deazaadenosine nucleosides has been synthesised containing diarylacetylene groups at C7. Diarylacetylene boronate esters were synthesised by chemoselective Sonogashira cross-coupling. The boronate esters were then coupled to 7-iodo-7-deazaadenine nucleosides using aqueous Suzuki-Miyaura cross-coupling in good to excellent yields (68%->99%). The modified nucleosides showed very promising UV-vis absorption and fluorescence emission properties in DMSO, with high quantum yields and UV absorbance maxima bathochromically shifted with respect to intrinsic biomolecular absorption bands. In water, the parent compound 20a had a decreased quantum yield (0.15) and the absorbance maximum occurred at a lower wavelength (302 nm). The protected phosphoramidite of 20a was synthesised, and the fluorescent nucleoside was incorporated at a central position in a series of 13-base deoxyoligonucleotides, covering a range of neighbouring DNA sequence contexts. The oligonucleotides had absorbance maxima similar to the nucleoside in DMSO (ca. 322 nm), and quantum yields comparable to the nucleoside in water (0.024-0.237). Melting curve analysis of the oligonucleotide duplexes showed some destabilisation due to the fluorescent substituent, but less than expected for a completely mismatched base pair. Circular dichroism spectra highlighted the range of ordered, helix-like structures present in the single-strand oligonucleotides, and confirmed that the duplexes formed a B-type DNA helix. An investigation of base-pair mismatch discrimination showed a clear fluorescence quenching effect for c7A∙C mismatch pairs. Other mismatches did not show discriminatory fluorescence quenching or enhancement. Investigation of the pH dependence of the oligonucleotide fluorescence emission showed high sensitivity to changes in pH, with acidic conditions causing significant quenching. The evidence strongly suggests that mismatched base-pair discrimination is due to formation of a protonated wobble pairing between the 7-deazaadenosine and cytidine, as previously proposed by Seela and co-workers. This base-pair mismatch causes an increase in the pKa of the 7-deazaadenosine heterocycle, so the mismatch acts as a template for protonation. Potential applications for the 7-modified 7-deazaadenosine nucleoside analogues are discussed
Direct C-H/C-X Coupling Methodologies Mediated by Pd/Cu or Cu: An Examination of the Synthetic Applications and Mechanistic Findings
Organocopper chemistry has long been known to be powerful synthetic methodology leading to the generation of C-C, C-O, C-N, C-S and C-X bonds. Advances in catalytic and stoichiometric organometallic reactions for the formation of C-C bonds from unfunctionalised arenes, e.g. by activation-functionalisation of a C-H bond, provides diverse and applicable reaction conditions for direct functionalisation. This review covers the background, applications and recent advances made in the area of aromatic C-X/C-H-bond couplings promoted by copper and copper/palladium mixed systems. The efficacy and scope of these reactions are discussed and the different methodologies are placed into context. Mechanistic considerations and evidence are highlighted at appropriate junctures in the review
Design of thiazole orange oligonucleotide probes for detection of DNA and RNA by fluorescence and duplex melting
We have synthesised a range of thiazole orange (TO) functionalised oligonucleotides for nucleic acid detection in which TO is attached to the nucleobase or sugar of thymidine. The properties of duplexes between TO-probes and their DNA and RNA targets strongly depend on the length of the linker between TO and the oligonucleotide, the position of attachment of TO to the nucleotide (major or minor groove) and the mode of attachment of thiazole orange (via benzothiazole or quinoline moiety). This information can be used to design probes for detection of target nucleic acids by fluorescence or duplex melting. With cellular imaging in mind we show that 2′-OMe RNA probes with TO at the 5-position of uracil or the 2′-position of the ribose sugar are particularly effective, exhibiting up to 44-fold fluorescence enhancement against DNA and RNA, and high duplex stability. Excellent mismatch discrimination is achieved when the mispaired base is located adjacent to the TO-modified nucleotide rather than opposite to it. The simple design, ease of synthesis and favourable properties of these TO probes suggest applications in fluorescent imaging of DNA and RNA in a cellular context.</p
Formation and propagation of well-defined Pd nanoparticles (PdNPs) during C–H bond functionalization of heteroarenes: are nanoparticles a moribund form of Pd or an active catalytic species?
Examination of a series of C–H bond functionalization reactions of heteroarenes (e.g., indole, benzoxazole, benzthiazole, benzimidazole and purine derivatives) mediated by Pd(OAc)2, a commonly used C–H bond functionalization catalyst, reveals that well-defined Pd nanoparticles (PdNPs) are rapidly formed under working catalyst conditions. The PdNPs can be characterized ex situ after entrapment in a polymer matrix (polyvinylpyrrolidinone, PVP). Independently synthesized Pd(PVP)NPs are catalytically competent species, exhibiting catalyst activity commensurate with Pd(OAc)2 in several C–H bond functionalization reactions. Across a range of reactions, Pd concentration is a common variable, which can be linked to the propagation of PdNPs under working catalytic conditions using polar solvents like DMF, DMSO and acetic acid
Pd(0)/Cu(I)-Mediated Direct Arylation of 2′-Deoxyadenosines: Mechanistic Role of Cu(I) and Reactivity Comparisons with Related Purine Nucleosides
Pd/Cu-mediated direct arylation of 2′-deoxyadenosine with various aryl iodides provides 8-arylated 2′-deoxyadenosine derivatives in good yields. Following significant reaction optimization, it has been determined that a substoichiometric quantity of piperidine (secondary amine) in combination with cesium carbonate is necessary for effective direct arylation. The general synthetic protocol allows lower temperature direct arylations, which minimizes deglycosylation. The origin of the piperidine effect primarily derives from the in situ generation of Pd(OAc)2[(CH2)5NH]2. Various copper(I) salts have been evaluated; only CuI provides good yields of the 8-arylated-2′-deoxyadenosines. Copper(I) appears to have a high binding affinity for 2′-deoxyadenosine, which explains the mandatory requirement for stoichiometric amounts of this key component. The conditions are compared with more general direct arylation protocols, e.g., catalytic Pd, ligand, acid additives, which do not employ copper(I). In each case, no detectable arylation of 2′-deoxyadenosine was noted. The conformational preferences of the 8-aryl-2′-deoxyadenosine products have been determined by detailed spectroscopic (NMR) and single crystal X-ray diffraction studies. Almost exclusively, the preferred solution-state conformation was determined to be syn-C2′-endo (ca. 80%). The presence of a 2-pyridyl group at the 8-position further biases the solution-state equilibrium toward this conformer (ca. 88%), due to an additional H-bond between H1′ and the pyridyl nitrogen atom. The Pd/Cu catalyst system has been found to be unique for adenosine type substrates, the reactivity of which has been placed into context with the reported direct arylations of related 1H-imidazoles. The reactivity of other purine nucleosides has been assessed, which has revealed that both 2′-deoxyguanosine and guanosine are incompatible with the Pd/Cu-direct arylation conditions. Both substrates appear to hinder catalysis, akin to the established inhibitory effects in Suzuki cross-couplings with arylboronic acids