29 research outputs found

    ANALISIS SUBSISTEM RAMP UNTUK MENAIKI TANGGA PADA MOBIL ROBOT LIPI VERSI 1 (MOROLIPI V1)

    Get PDF
    Paper ini membahas secara rinci analisis sistem menaiki tangga (ramp) pada prototipe mobil robot penjinak bom versi 1 (morolipi v1). Analisis perlu dilakukan agar secara ilmiah dapat dibuktikan bahwa robot berfungsi sesuai dengan yang didesain. Analisis menggunakan pendekatan kinematika klasik untuk mendapatkan gaya dan momen yang bekerja pada mekanisme penggerak saat menaiki tangga. Berdasarkan analisis melalui simulasi dan eksperimen yang dilakukan maka dapat disimpulkan bahwa desain mobil robot dapat terbukti dapat bekerja dengan baik untuk ramp mobil robot menaiki tangga dengan kemiringan maksimal 42 derajat. Momen paling besar ketika menaiki tangga di sudut kemiringan 30 derajat dengan koefisien gesek 0,9.

    Rancang Bangun Sistem Kendali Motor Stepper Printer Canon BJC-S200SPx untuk Prototipe Lengan Robot 5-DOF (Majabot)

    Get PDF
    Designing and building of motor stepper control system from unused printer Canon BJC-S200SPx of robot arm prototype with five degree of freedom (5-DOF) has been developed. That printer type is used because if trouble occur it is not only very difficult but also expensive to be repaired, so it is sold very cheap or misspent. Robot arm has 5 revolution joints, wherein each joint is limited by one degree of freedom to make the manipulator control systems and mechanics work easier. To control the systems device, it needs driver (control circuit) with data input in the form of computer command using programming software, with parallel port communicated in order to generate motor stepper pulses. The experiment results showed that low-precisian of robot arm movement occur cumulatively, although hardware and software control systems had been designed optimally

    Position Control of 1-DOF High-Precision Rotary Table using Adaptive Neuro-Fuzzy Inference System (ANFIS) Controller

    Get PDF
    Research of position control of 1-DOF high-precision rotary table using adaptive Neuro-Fuzzy inference system (ANFIS) controller has been done. In the closed-loop system without a controller, the response was oscillating and pounding caused by inertial torque. It because a rotary table receives a considerable load. Based on this, the ANFIS controller is needed to eliminate oscillations and compensate for the inertia. The result shows that there was no oscillation or overshoot with the steady-state error value of 2.27% for the reference angle of 45°, valued at 0.10% reference angle of 180°, and valued at 0% reference angle of 360°. The result proves that ANFIS controllers can eliminate oscillations with and compensate for inertia

    ANALISA RANGKA LOAD-FRAME DARI ALAT TRIAXIAL DIGITAL 50 KN

    Get PDF
    An analysis of the strength of the material on the framework of the digital triaxial apparatus to increase the maximum working capability to 50 kN has been performed. A digital triaxial device is a test machine used to determine the properties of a soil sample. Analysis of the framework of this tool is needed to see the character of the material used so as to obtain maximum performance to support the performance of the digital triaxial device. The frame in question consists of a bottom base, two poles, and a beam rod positioned at the top of the pole. The analysis performed using 3D Solidworks software utilizes structural analysis features. Pressures of 50 kN are given in a vertical direction so as to press the midpoint of the bottom base and the beam rod, both of which are attached to the pole using a nut as anchoring. The analysis result shows that Stress Von Mises maximum vallue that works on parts is 1.664,7 kgf/cm2.  Keywords: Triaxial Digital, load- frame, structure analysis, 50 K

    KOMUNIKASI DUA ARAH MODUL PENGENDALI MOTOR ALAT TRIAXIAL DIGITAL

    Get PDF
    This study aims to apply two-way communication module for motor controller on digital triaxial test equipment. In the triaxial digital test equipment, the speed and direction of up / down motors in the previous version is still manually controlled by pressing the push button on the control panel. In this research is done digitalize all process at control panel, so that all activity of control tool can be done in front of computer. The communication between the computer and the digital triaxial test device uses a serial communication directly connected to the motor controller module, where the computer sends only characters that will be processed by the microcontroller. The microcontroller translates characters sent, processed, and gives commands to be forwarded to displays and motors. Testing is done directly using Gerlink Triaxial application on computer. Based on some test results obtained that the character sent by the computer can move and change the speed of the motor, and rearrange the loadcell readings on triaxial test equipment. The data rate sent each character is 1.04 milliseconds each.Makalah ini membahas komunikasi dua arah modul untuk pengendali motor pada alat uji triaxial digital. Pada alat uji triaxial digital, pengaturan kecepatan dan arah naik/turun motor pada versi sebelumnya masih di dikendalikan secara manual dengan cara menekan tombol push button pada control panel. Pada penelitian ini dilakukan digitalisasi segala proses pada control panel, sehingga segala aktivitas pengendalian alat dapat dilakukan didepan komputer. Komunikasi antara komputer dan alat uji triaxial digital menggunakan komunikasi serial yang terhubung langsung dengan modul pengendali motor, dimana komputer hanya mengirim berupa karakter yang selanjutnya akan diproses oleh mikrokontroler. Mikrokontroler tersebut menterjemahkan karakter yang dikirim, memproses, dan memberikan perintah untuk diteruskan ke display dan motor. Pengujian dilakukan langsung menggunakan aplikasi Gerlink Triaxial pada komputer, Berdasarkan beberapa hasil ujicoba didapatkan bahwa karakter yang dikirim oleh komputer dapat menggerakan dan merubah kecepatan motor, serta mengatur ulang pembacaan loadcell pada alat uji triaxial. Kecepatan data yang dikirim setiap karakter masing-masing adalah 1,04 milidetik

    Implementation of fuzzy logic control system on rotary car parking system prototype

    Get PDF
    Rotary car parking system (RCPS) is one of the effective parking models used in the metropolitan area because the mechanical parking system is designed vertically to conserve the land usage. This paper discussed the implementation of fuzzy logic with the Sugeno Inference Model on the RCPS miniature control system. The research started with kinematics analysis and a mathematical model was derived to determine the slot position and optimal power requirements for each condition. Furthermore, the Fuzzy Inference model used was the Sugeno Model, taking into account two variables: distance and angle. These two variables were selected because in the designed miniature RCPS there will be rotational changes of rotation and rotation in turn. Variable distance was divided into four clusters, such as Zero, Near, Medium and Far. While the angle variables were divided into four clusters as well, such as Zero, Small, Medium, and Big. The test results on a miniature RCPS consisting of six parking slots showed that fuzzy based control provided better results when compared to conventional systems. Step response on the control system without fuzzy control showed the rise time value of 0.58 seconds, peak time of 0.85 seconds, settling time of 0.89, percentage overshoot of 0.20%, and steady state error of 4.14%. While the fuzzy control system provided the rise time value of 0.54 seconds, settling time of 0.83 seconds, steady state error of 2.32%, with no overshoot

    Teknologi Sensor Otomotif

    No full text
    Buku ini menyajikan pengetahuan terkait teknologi yang baik sadar maupun tidak sadar sering kita jumpai saat berkendara, yaitu teknologi sensor otomotif. Terkadang, karena kurangnya rasa ingin tahu kita atau rasa nyaman sebagai end-user pasif, sensor otomotif menjadi hal yang awam bagi para pengendara. Pada era modern saat ini, sebuah kendaraan sangat erat berkaitan dengan sensor-sensor, bahkan sudah merupakan suatu kebutuhan yang tak terhindari. Berdasarkan hal tersebut, maka buku ini dipersembahkan untuk mengetahui lebih dalam lagi tentang jenis-jenis sensor yang digunakan dan bagaimana kerja sensor tersebut dari sudut pandang Teknologi. Sensor otomotif memiliki berbagai jenis dan kegunaan serta dapat diklasifikasikan berdasarkan berbagai macam faktor. Buku ini menjelaskan secara lugas dan sederhana tentang klasifikasi sensor baik sensor umum maupun sensor khusus pada kendaraan yang umum dipasaran (bab 2). Kendaraan diartikan sebagai benda yang bergerak sehingga sensor yang pertama kali dijelaskan pada buku ini adalah sensor-sensor yang terkait dengan gerak. Buku ini akan mengulas bagaimana bentuk dan prinsip kerjanya secara padat (bab 3). Sensor yang selanjutkan dipaparkan adalah sensor tekanan (Bab 4) dan tidak kalah pentingnya adalah sensor posisi untuk pengaturan posisi dari beberapa komponen kendaraan (bab 5). Pada saat kendaraan beroperasi, diperlukan sensor termperatur yang dapat mengamankan mesin dari risiko panas berlebih (overheat) (bab 6). Sensor-sensor diatas tidak cukup menjadikan sebuah kendaraan menjadi kendaraan modern seperti sekarang ini. Diperlukan beberapa sensor tambahan antara lain: sensor yang mendeteksi aliran udara massa; oksigen gas buang; engine knock; akselerasi linier; kecepatan sudut; pendeteksi optik; sensor kelembaban /hujan; level bahan bakar; pendeteksi penghalang jarak dekat; pendeteksi penghalang jarak jauh; motor bakar; kualitas /kejelekan oli; torsi kemudi/transmisi/mesin; dan inersia multi-axis micromachined yang dijelaskan pada bab 7. Pada masing-masing bagian akhir bab dijelaskan bagaimana aplikasi langsung sensor tersebut pada otomotif, dimana sensor tersebut dipasang dan bagaimana sensor tersebut bekerja

    Analysis of Inverse Angle Method for Controlling Two Degree of Freedom Manipulator

    No full text
    Driver mechanism with two degree of freedom (MP 2-DK) is a robotic device that can be used for various applications such as turret drive system, gutling gun, launcher, radar antennas, and communications satellite antennas. The precision and the speed of a MP 2-DK are determined by its control system. The calculation inverse angle due to interference in six degree of freedom is necessary to control a MP 2 DK. This paper analyses three calculation methods of inverse angle which are iteration method using Jacobian matrix, reduction of matrix equations using positioning geometry, and an analytical derivation using a rotation matrix. The simulation results of the three methods showed that the first and the third methods could visually demonstrate three rotational disturbances, whereas the second method could only demonstrate the pitch and yaw (PY) disturbances. The third method required less processing time than the first and the second methods. The best method based on this research was the method of rotation matrix

    IMU Application in Measurement of Vehicle Position and Orientation for Controlling a Pan-Tilt Mechanism

    Get PDF
    This paper describes a modeling and designing of inertial sensor using Inertial Measurement Unit (IMU) to measure the position and orientation of a vehicle motion. Sensor modeling is used to derive the vehicle attitude models where the sensor is attached while the sensor design is used to obtain the data as the input to control the angles of a pan-tilt mechanism with 2 degrees of freedom. Inertial sensor Phidget Spatial 3/3/3, which is a combination of 3-axis gyroscope, 3-axis accelerometer and 3-axis magnetometer, is used as the research object. Software for reading the sensor was made by using Matlab™. The result shows that the software can be applied to the sensor in the real-time reading process. The sensor readings should consider several things i.e. (a) sampling time should not be less than 32 ms and (b) deviation ratio between measurement noise (r) and process noise (q) for the parameters of Kalman filter is 1:5 (i.e. r = 0.08 and q = 0.4)

    Algorithm of 32-bit Data Transmission Among Microcontrollers Through an 8-bit Port

    Get PDF
    This paper proposes an algorithm for 32-bit data transmission among microcontrollers through one 8-bit port. This method was motivated by a need to overcome limitations of microcontroller I/O as well as to fulfill the requirement of data transmission which is more than 10 bits. In this paper, the use of an 8-bit port has been optimized for 32-bit data transmission using unsigned long integer, long integer, and float types. Thirty-two bit data is extracted intobinary number, then sent through a series of 8-bit ports by transmitter microcontroller. At receiver microcontroller, the binary data received through 8-bit port is reconverted into 32 bits with the same data type. The algorithm has been implemented and tested using C language in ATMega32A microcontroller. Experiments have been done using two microcontrollers as well as four microcontrollers in the parallel, tree, and series connections. Based on the experiments, it is known that the data transmitted can be accurately received without data loss. Maximum transmission times among two microcontrollers for unsigned long integer, long integer, and float are 630 μs, 1,880 μs, and 7,830 μs, respectively. Maximum transmission times using four microcontrollers in parallel connection are the same as those using two microcontrollers, while in series connection are 1,930 μs for unsigned long integer, 5,640 μs for long integer, and 23,540 μs for float. The maximum transmission times of tree connection is close to those of the parallel connection. These results prove that the algorithm works well
    corecore