99 research outputs found
Is the Riemann zeta function in a short interval a 1-RSB spin glass ?
Fyodorov, Hiary & Keating established an intriguing connection between the
maxima of log-correlated processes and the ones of the Riemann zeta function on
a short interval of the critical line. In particular, they suggest that the
analogue of the free energy of the Riemann zeta function is identical to the
one of the Random Energy Model in spin glasses. In this paper, the connection
between spin glasses and the Riemann zeta function is explored further. We
study a random model of the Riemann zeta function and show that its two-overlap
distribution corresponds to the one of a one-step replica symmetry breaking
(1-RSB) spin glass. This provides evidence that the local maxima of the zeta
function are strongly clustered.Comment: 20 pages, 1 figure, Minor corrections, References update
Isotopic Composition of Light Nuclei in Cosmic Rays: Results from AMS-01
The variety of isotopes in cosmic rays allows us to study different aspects
of the processes that cosmic rays undergo between the time they are produced
and the time of their arrival in the heliosphere. In this paper we present
measurements of the isotopic ratios 2H/4He, 3He/4He, 6Li/7Li, 7Be/(9Be+10Be)
and 10B/11B in the range 0.2-1.4 GeV of kinetic energy per nucleon. The
measurements are based on the data collected by the Alpha Magnetic
Spectrometer, AMS-01, during the STS-91 flight in 1998 June.Comment: To appear in ApJ. 12 pages, 11 figures, 6 table
Precision Measurement of the Boron to Carbon Flux Ratio in Cosmic Rays from 1.9 GV to 2.6 TV with the Alpha Magnetic Spectrometer on the International Space Station
Knowledge of the rigidity dependence of the boron to carbon flux ratio (B/C) is important in understanding the propagation of cosmic rays. The precise measurement of the B/C ratio from 1.9 GV to 2.6 TV, based on 2.3 million boron and 8.3 million carbon nuclei collected by AMS during the first 5 years of operation, is presented. The detailed variation with rigidity of the B/C spectral index is reported for the first time. The B/C ratio does not show any significant structures in contrast to many cosmic ray models that require such structures at high rigidities. Remarkably, above 65 GV, the B/C ratio is well described by a single power law R[superscript Δ] with index Δ=-0.333±0.014(fit)±0.005(syst), in good agreement with the Kolmogorov theory of turbulence which predicts Δ=-1/3 asymptotically.National Science Foundation (U.S.) (Grants 1455202 and 1551980)Wyle Research (Firm) (Grant 2014/T72497)United States. National Aeronautics and Space Administration (NASA Earth and Space Science Fellowship Grant HELIO15F-0005
Ecotoxicity characterization of chemicals: global recommendations and implementation in USEtox
Chemicals emitted to the environment affect ecosystem health from local to global scale, and reducing chemical impacts has become an important element of European and global sustainability efforts. The present work ad-vances ecotoxicity characterization of chemicals in life cycle impact assessment by proposing recommendations resulting from international expert workshops and work conducted under the umbrella of the UNEP-SETAC Life Cycle Initiative in the GLAM project (Global guidance on environmental life cycle impact assessment indicators). We include specific recommendations for broadening the assessment scope through proposing to introduce additional environmental compartments beyond freshwater and related ecotoxicity indicators, as well as for adapting the ecotoxicity effect modelling approach to better reflect environmentally relevant exposure levels and including to a larger extent chronic test data. As result, we (1) propose a consistent mathematical framework for calculating freshwater ecotoxicity characterization factors and their underlying fate, exposure and effect pa-rameters; (2) implement the framework into the USEtox scientific consensus model; (3) calculate characteriza-tion factors for chemicals reported in an inventory of a life cycle assessment case study on rice production and consumption; and (4) investigate the influence of effect data selection criteria on resulting indicator scores. Our results highlight the need for careful interpretation of life cycle assessment impact scores in light of robustness of underlying species sensitivity distributions. Next steps are to apply the recommended characterization frame-work in additional case studies, and to adapt it to soil, sediment and the marine environment. Our framework is applicable for evaluating chemicals in life cycle assessment, chemical and environmental footprinting, chemical substitution, risk screening, chemical prioritization, and comparison with environmental sustainability targets.Environmental Biolog
Rainwater harvesting systems reduce detergent use
Unidad de excelencia María de Maeztu MdM-2015-0552Purpose: Due to population growth, urban water demand is expected to increase significantly, as well as the environmental and economic costs required to supply it. Rainwater harvesting (RWH) systems can play a key role in helping cities meet part of their water demand as an alternative to conventional water abstraction and treatment. This paper presents an environmental and economic analysis of RWH systems providing households with water for laundry purposes in a life cycle thinking perspective. Conclusions: LCA and LCC present better results for high-density scenarios. Overall, avoided environmental and economic impacts from detergent reduction clearly surpass environmental impacts (in all categories except terrestrial acidification) and economic cost of the RWHsystem in most cases (except two scenarios). Another important finding is that 80%of the savings are achieved by minimizing detergent and fabric softener by using soft rainwater; and the remaining 20% comes from replacing the use of tap water
Prospective Environmental Life Cycle Assessment of Nanosilver T-Shirts
A cradle-to-grave life cycle assessment (LCA) is performed to compare nanosilver T-shirts with conventional T-shirts with and without biocidal treatment. For nanosilver production and textile incorporation, we investigate two processes: flame spray pyrolysis (FSP) and plasma polymerization with silver co-sputtering (PlaSpu). Prospective environmental impacts due to increased nanosilver T-shirt commercialization are estimated with six scenarios. Results show significant differences in environmental burdens between nanoparticle production technologies: The "cradle-to-gate" climate footprint of the production of a nanosilver T-shirt is 2.70 kg of CO2-equiv (FSP) and 7.67-166 kg of CO2-equiv (PlaSpu, varying maturity stages). Production of conventional T-shirts with and without the biocide triclosan has emissions of 2.55 kg of CO2-equiv (contribution from triclosan insignificant). Consumer behavior considerably affects the environmental impacts during the use phase. Lower washing frequencies can compensate for the increased climate footprint of FSP nanosilver T-shirt production. The toxic releases from washing and disposal in the life cycle of T-shirts appear to be of minor relevance. By contrast, the production phase may be rather significant due to toxic silver emissions at the mining site if high silver quantities are require
Characterization of the Metabolically Modified Heavy Metal-Resistant Cupriavidus metallidurans Strain MSR33 Generated for Mercury Bioremediation
BACKGROUND: Mercury-polluted environments are often contaminated with other heavy metals. Therefore, bacteria with resistance to several heavy metals may be useful for bioremediation. Cupriavidus metallidurans CH34 is a model heavy metal-resistant bacterium, but possesses a low resistance to mercury compounds. METHODOLOGY/PRINCIPAL FINDINGS: To improve inorganic and organic mercury resistance of strain CH34, the IncP-1β plasmid pTP6 that provides novel merB, merG genes and additional other mer genes was introduced into the bacterium by biparental mating. The transconjugant Cupriavidus metallidurans strain MSR33 was genetically and biochemically characterized. Strain MSR33 maintained stably the plasmid pTP6 over 70 generations under non-selective conditions. The organomercurial lyase protein MerB and the mercuric reductase MerA of strain MSR33 were synthesized in presence of Hg(2+). The minimum inhibitory concentrations (mM) for strain MSR33 were: Hg(2+), 0.12 and CH(3)Hg(+), 0.08. The addition of Hg(2+) (0.04 mM) at exponential phase had not an effect on the growth rate of strain MSR33. In contrast, after Hg(2+) addition at exponential phase the parental strain CH34 showed an immediate cessation of cell growth. During exposure to Hg(2+) no effects in the morphology of MSR33 cells were observed, whereas CH34 cells exposed to Hg(2+) showed a fuzzy outer membrane. Bioremediation with strain MSR33 of two mercury-contaminated aqueous solutions was evaluated. Hg(2+) (0.10 and 0.15 mM) was completely volatilized by strain MSR33 from the polluted waters in presence of thioglycolate (5 mM) after 2 h. CONCLUSIONS/SIGNIFICANCE: A broad-spectrum mercury-resistant strain MSR33 was generated by incorporation of plasmid pTP6 that was directly isolated from the environment into C. metallidurans CH34. Strain MSR33 is capable to remove mercury from polluted waters. This is the first study to use an IncP-1β plasmid directly isolated from the environment, to generate a novel and stable bacterial strain useful for mercury bioremediation
Electron and positron fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station
Precision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to 500 GeV are presented. The electron flux and the positron flux each require a description beyond a single power-law spectrum. Both the electron flux and the positron flux change their behavior at ∼30GeV but the fluxes are significantly different in their magnitude and energy dependence. Between 20 and 200 GeV the positron spectral index is significantly harder than the electron spectral index. The determination of the differing behavior of the spectral indices versus energy is a new observation and provides important information on the origins of cosmic-ray electrons and positrons.</p
- …
