70 research outputs found

    The influence of nonrandom extra-pair paternity on heritability estimates derived from wild pedigrees

    Get PDF
    Quantitative genetic analysis is often fundamental for understanding evolutionary processes in wild populations. Avian populations provide a model system due to the relative ease of inferring relatedness among individuals through observation. However, extra-pair paternity (EPP) creates erroneous links within the social pedigree. Previous work has suggested this causes minor underestimation of heritability if paternal misassignment is random and hence not influenced by the trait being studied. Nevertheless, much literature suggests numerous traits are associated with EPP and the accuracy of heritability estimates for such traits remains unexplored. We show analytically how nonrandom pedigree errors can influence heritability estimates. Then, combining empirical data from a large great tit (Parus major) pedigree with simulations, we assess how heritability estimates derived from social pedigrees change depending on the mode of the relationship between EPP and the focal trait. We show that the magnitude of the underestimation is typically small (<15%). Hence, our analyses suggest that quantitative genetic inference from pedigrees derived from observations of social relationships is relatively robust; our approach also provides a widely applicable method for assessing the consequences of nonrandom EPP

    Characterisation of the transcriptome of a wild great tit Parus major population by next generation sequencing

    Get PDF
    Background: The recent development of next generation sequencing technologies has made it possible to generate very large amounts of sequence data in species with little or no genome information. Combined with the large phenotypic databases available for wild and non-model species, these data will provide an unprecedented opportunity to "genomicise" ecological model organisms and establish the genetic basis of quantitative traits in natural populations

    The Imprinted Gene DIO3 Is a Candidate Gene for Litter Size in Pigs

    Get PDF
    Genomic imprinting is an important epigenetic phenomenon, which on the phenotypic level can be detected by the difference between the two heterozygote classes of a gene. Imprinted genes are important in both the development of the placenta and the embryo, and we hypothesized that imprinted genes might be involved in female fertility traits. We therefore performed an association study for imprinted genes related to female fertility traits in two commercial pig populations. For this purpose, 309 SNPs in fifteen evolutionary conserved imprinted regions were genotyped on 689 and 1050 pigs from the two pig populations. A single SNP association study was used to detect additive, dominant and imprinting effects related to four reproduction traits; total number of piglets born, the number of piglets born alive, the total weight of the piglets born and the total weight of the piglets born alive. Several SNPs showed significant () additive and dominant effects and one SNP showed a significant imprinting effect. The SNP with a significant imprinting effect is closely linked to DIO3, a gene involved in thyroid metabolism. The imprinting effect of this SNP explained approximately 1.6% of the phenotypic variance, which corresponded to approximately 15.5% of the additive genetic variance. In the other population, the imprinting effect of this QTL was not significant (), but had a similar effect as in the first population. The results of this study indicate a possible association between the imprinted gene DIO3 and female fertility traits in pigs

    Genetic variance in fitness indicates rapid contemporary adaptive evolution in wild animals

    Get PDF
    Funding: Hoge Veluwe great tits: the NIOO-KNAW, ERC, and numerous funding agencies; Wytham great tits: Biotechnology and Biological Sciences Research Council, ERC, and the UK Natural Environment Research Council (NERC).The rate of adaptive evolution, the contribution of selection to genetic changes that increase mean fitness, is determined by the additive genetic variance in individual relative fitness. To date, there are few robust estimates of this parameter for natural populations, and it is therefore unclear whether adaptive evolution can play a meaningful role in short-term population dynamics. We developed and applied quantitative genetic methods to long-term datasets from 19 wild bird and mammal populations and found that, while estimates vary between populations, additive genetic variance in relative fitness is often substantial and, on average, twice that of previous estimates. We show that these rates of contemporary adaptive evolution can affect population dynamics and hence that natural selection has the potential to partly mitigate effects of current environmental change.PostprintPeer reviewe

    Fewer invited talks by women in evolutionary biology symposia

    Get PDF
    Abstract Lower visibility of female scientists, compared to male scientists, is a potential reason for the under-representation of women among senior academic ranks. Visibility in the scientific community stems partly from presenting research as an invited speaker at organized meetings. We analysed the sex ratio of presenters at the European Society for Evolutionary Biology (ESEB) Congress 2011, where all abstract submissions were accepted for presentation. Women were under-represented among invited speakers at symposia (15% women) compared to all presenters (46%), regular oral presenters (41%) and plenary speakers (25%). At the ESEB congresses in 2001-2011, 9-23% of invited speakers were women. This under-representation of women is partly attributable to a larger proportion of women, than men, declining invitations: in 2011, 50% of women declined an invitation to speak compared to 26% of men. We expect invited speakers to be scientists from top ranked institutions or authors of recent papers in high-impact journals. Considering all invited speakers (including declined invitations), 23% were women. This was lower than the baseline sex ratios of early-mid career stage scientists, but was similar to senior scientists and authors that have published in high-impact journals. High-quality science by women therefore has low exposure at international meetings, which will constrain Evolutionary Biology from reaching its full potential. We wish to highlight the wider implications of turning down invitations to speak, and encourage conference organizers to implement steps to increase acceptance rates of invited talks

    Fewer invited talks by women in evolutionary biology symposia

    Get PDF
    Abstract Lower visibility of female scientists, compared to male scientists, is a potential reason for the under-representation of women among senior academic ranks. Visibility in the scientific community stems partly from presenting research as an invited speaker at organized meetings. We analysed the sex ratio of presenters at the European Society for Evolutionary Biology (ESEB) Congress 2011, where all abstract submissions were accepted for presentation. Women were under-represented among invited speakers at symposia (15% women) compared to all presenters (46%), regular oral presenters (41%) and plenary speakers (25%). At the ESEB congresses in 2001-2011, 9-23% of invited speakers were women. This under-representation of women is partly attributable to a larger proportion of women, than men, declining invitations: in 2011, 50% of women declined an invitation to speak compared to 26% of men. We expect invited speakers to be scientists from top ranked institutions or authors of recent papers in high-impact journals. Considering all invited speakers (including declined invitations), 23% were women. This was lower than the baseline sex ratios of early-mid career stage scientists, but was similar to senior scientists and authors that have published in high-impact journals. High-quality science by women therefore has low exposure at international meetings, which will constrain Evolutionary Biology from reaching its full potential. We wish to highlight the wider implications of turning down invitations to speak, and encourage conference organizers to implement steps to increase acceptance rates of invited talks

    The genetic architecture of helminth-specific immune responses in a wild population of Soay sheep (Ovis aries)

    Get PDF
    Much of our knowledge of the drivers of immune variation, and how these responses vary over time, comes from humans, domesticated livestock or laboratory organisms. While the genetic basis of variation in immune responses have been investigated in these systems, there is a poor understanding of how genetic variation influences immunity in natural, untreated populations living in complex environments. Here, we examine the genetic architecture of variation in immune traits in the Soay sheep of St Kilda, an unmanaged population of sheep infected with strongyle gastrointestinal nematodes. We assayed IgA, IgE and IgG antibodies against the prevalent nematode Teladorsagia circumcincta in the blood plasma of > 3,000 sheep collected over 26 years. Antibody levels were significantly heritable (h2 = 0.21 to 0.57) and highly stable over an individual’s lifespan. IgA levels were strongly associated with a region on chromosome 24 explaining 21.1% and 24.5% of heritable variation in lambs and adults, respectively. This region was adjacent to two candidate loci, Class II Major Histocompatibility Complex Transactivator (CIITA) and C-Type Lectin Domain Containing 16A (CLEC16A). Lamb IgA levels were also associated with the immunoglobulin heavy constant loci (IGH) complex, and adult IgE levels and lamb IgA and IgG levels were associated with the major histocompatibility complex (MHC). This study provides evidence of high heritability of a complex immunological trait under natural conditions and provides the first evidence from a genome-wide study that large effect genes located outside the MHC region exist for immune traits in the wild
    corecore