2,258 research outputs found
Slow crack growth in polycarbonate films
We study experimentally the slow growth of a single crack in polycarbonate
films submitted to uniaxial and constant imposed stress. The specificity of
fracture in polycarbonate films is the appearance of flame shaped macroscopic
process zones at the tips of the crack. Supported by an experimental study of
the mechanical properties of polycarbonate films, an analysis of the stress
dependence of the mean ratio between the process zone and crack lengths, during
the crack growth, show a quantitative agreement with the Dugdale-Barenblatt
model of the plastic process zone. We find that the fracture growth curves obey
strong scaling properties that lead to a well defined growth master curve
Fracture Surfaces as Multiscaling Graphs
Fracture paths in quasi-two-dimenisonal (2D) media (e.g thin layers of
materials, paper) are analyzed as self-affine graphs of height as a
function of length . We show that these are multiscaling, in the sense that
order moments of the height fluctuations across any distance
scale with a characteristic exponent that depends nonlinearly on the order of
the moment. Having demonstrated this, one rules out a widely held conjecture
that fracture in 2D belongs to the universality class of directed polymers in
random media. In fact, 2D fracture does not belong to any of the known kinetic
roughening models. The presence of multiscaling offers a stringent test for any
theoretical model; we show that a recently introduced model of quasi-static
fracture passes this test.Comment: 4 pages, 5 figure
Discrepancy between sub-critical and fast rupture roughness: a cumulant analysis
We study the roughness of a crack interface in a sheet of paper. We
distinguish between slow (sub-critical) and fast crack growth regimes. We show
that the fracture roughness is different in the two regimes using a new method
based on a multifractal formalism recently developed in the turbulence
literature. Deviations from monofractality also appear to be different in both
regimes
Discriminating between competing models for the allosteric regulation of oncogenic phosphatase SHP2 by characterizing its active state
The Src-homology 2 domain containing phosphatase 2 (SHP2) plays a critical role in crucial signaling pathways and is involved in oncogenesis and in developmental disorders. Its structure includes two SH2 domains (N-SH2 and C-SH2), and a protein tyrosine phosphatase (PTP) domain. Under basal conditions, SHP2 is auto-inhibited, with the N-SH2 domain blocking the PTP active site. Activation involves a rearrangement of the domains that makes the catalytic site accessible, coupled to the association between the SH2 domains and cognate proteins containing phosphotyrosines. Several aspects of this transition are debated and competing mechanistic models have been proposed. A crystallographic structure of SHP2 in an active state has been reported (PDB code 6crf), but several lines of evidence suggests that it is not fully representative of the conformations populated in solution. To clarify the structural rearrangements involved in SHP2 activation, enhanced sampling simulations of the autoinhibited and active states have been performed, for wild type SHP2 and its pathogenic E76K variant. Our results demonstrate that the crystallographic conformation of the active state is unstable in solution, and multiple interdomain arrangements are populated, thus allowing association to bisphosphorylated sequences. Contrary to a recent proposal, activation is coupled to the conformational changes of the N-SH2 binding site, which is significantly more accessible in the active sate, rather than to the structure of the central β-sheet of the domain. In this coupling, a previously undescribed role for the N-SH2 BG loop emerged
Recommended from our members
The price of neglect: Revisiting Fossil Cycad National Monument (1922–1957)
The history associated with the discovery, research, preservation, protection, and loss of the fossil cycadeoid locality near Minnekahta in the southern Black Hills of South Dakota—which for 35 years was designated as Fossil Cycad National Monument—has gained considerable public attention. Several publications have attempted to capture portions of this history through the assimilation of information from archives, reports, correspondence, photographs, and other records associated with the monument. Previously unknown records continue to emerge, helping to expand and reshape the understanding of the monument’s unfortunate history, and also raising new questions. Some of the newly uncovered information is presented here. Additionally, several questions are identified that hopefully might be advanced through communication with individuals who are able to share additional information or historical records to fill in some of the gaps related to the history of Fossil Cycad National Monument
Field emission from single multi-wall carbon nanotubes
Electron field emission characteristics of individual multiwalled carbon
nanotubes have been investigated by a piezoelectric nanomanipulation system
operating inside a scanning electron microscopy chamber. The experimental setup
ensures a high control capability on the geometric parameters of the field
emission system (CNT length, diameter and anode-cathode distance). For several
multiwalled carbon nanotubes, reproducible and quite stable emission current
behaviour has been obtained with a dependence on the applied voltage well
described by a series resistance modified Fowler-Nordheim model. A turn-on
field of about 30 V/um and a field enhancement factor of around 100 at a
cathode-anode distance of the order of 1 um have been evaluated. Finally, the
effect of selective electron beam irradiation on the nanotube field emission
capabilities has been extensively investigated.Comment: 16 pages, 5 figure
Roughness and multiscaling of planar crack fronts
We consider numerically the roughness of a planar crack front within the
long-range elastic string model, with a tunable disorder correlation length
. The problem is shown to have two important length scales, and the
Larkin length . Multiscaling of the crack front is observed for scales
below , provided that the disorder is strong enough. The asymptotic
scaling with a roughness exponent is recovered for scales
larger than both and . If , these regimes are separated
by a third regime characterized by the Larkin exponent .
We discuss the experimental implications of our results.Comment: 8 pages, two figure
Sound and light from fractures in scintillators
Prompted by intriguing events observed in certain particle-physics searches
for rare events, we study light and acoustic emission simultaneously in some
inorganic scintillators subject to mechanical stress. We observe
mechanoluminescence in , and ,
in various mechanical configurations at room temperature and ambient pressure.
We analyze how the light emission is correlated to acoustic emission during
fracture. For , we set a lower bound on the energy of
the emitted light, and deduce that the fraction of elastic energy converted to
light is at least
Subcritical crack growth in fibrous materials
We present experiments on the slow growth of a single crack in a fax paper
sheet submitted to a constant force . We find that statistically averaged
crack growth curves can be described by only two parameters : the mean rupture
time and a characteristic growth length . We propose a model
based on a thermally activated rupture process that takes into account the
microstructure of cellulose fibers. The model is able to reproduce the shape of
the growth curve, the dependence of on as well as the effect of
temperature on the rupture time . We find that the length scale at which
rupture occurs in this model is consistently close to the diameter of cellulose
microfibrils
- …