We study experimentally the slow growth of a single crack in polycarbonate
films submitted to uniaxial and constant imposed stress. The specificity of
fracture in polycarbonate films is the appearance of flame shaped macroscopic
process zones at the tips of the crack. Supported by an experimental study of
the mechanical properties of polycarbonate films, an analysis of the stress
dependence of the mean ratio between the process zone and crack lengths, during
the crack growth, show a quantitative agreement with the Dugdale-Barenblatt
model of the plastic process zone. We find that the fracture growth curves obey
strong scaling properties that lead to a well defined growth master curve