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Intrawell stochastic resonance versus interwell stochastic resonance
in underdamped bistable systems

L. Alfonsi,* L. Gammaitoni*?* S. Santucct;® and A. R. Bulsar4;'
IDipartimento di Fisica, Universitali Perugia, 1-06100 Perugia, Italy
2Instituto Nazionale di Fisica Nucleare, Sezione di Perugia, 1-06100 Perugia, Italy
SInstituto Nazionale di Fisica della Materia, Sezione di Perugia, 1-06100 Perugia, Italy
4Space and Naval Warfare Systems Centre, Code D-364, San Diego, California 92152-5001
(Received 30 March 2000

We show that, for periodically driven noisy underdamped bistable systems, an intrawell stochastic resonance
can exist, together with the conventional interwell stochastic resonance, resulting in a double maximum in the
power spectral amplitude at the forcing frequency as a function of the noise intensity. The locations of the
maxima correspond to matchings of deterministic and stochastic time scales in the system. In this paper we
present experimental evidence of these phenomena and a phemonological nonadiabatic description in terms of
a noise-controlled nonlinear dynamic resonance.

PACS numbd(is): 05.40.Ca, 85.30.De

The occurrence of the stochastic resonai®/® phenom- In this work we take a different approach, dispensing with
enon in physical systems is, by now, well documeritel  both the above approximations, and studying the complete
SR is a noise-induced cooperative phenomenon, manifest inertial dynamics under broadband noise and a time-periodic
bistable systems, wherein the response to a subthreshadiiving signal. We show that in this case a resonant phenom-
time-periodic force can be enhanced in the presence of agnon (intrawell SR appears, for a range of parameters, in
optimal amount of noise. Since its incepti®], when itwas  addition to the classical(i.e., interwel) SR. SR in
proposed as a possible explanation for the periodicity of thenonostable system@pecifically, the underdamped single-
ice ages, SR has been studied in a variety of nonlinear dygze Duffing oscillato) was first reported ifig], while “con-

namic models, and experimentally observed in a number Qfgntigna|” SR in an underdamped bistable system was first
physical systemesee, e.g/1]), including laser$3], electron addressed if9]. In this paper we show the coexistence/

paramagnetic resonance spectromeldis superconducting competition between these effects, over a certain range of

?nu;nrfgg:: g:sirggg? angi\gﬁﬁ[f]h \;?éllguiﬂelectronlc and system and forcing parameters, in an underdamped bistable
9 ' iy ayrl. system.

Due to the intrinsic complexity of the nonlinear dynamics . . . . .

in the presence of deterministiperiodic driving and sto- We con§|der t.he Brownian _motlon of a point partl'cle of
chastic (noise forces, theoretically modeling the SR phe- UNit mass in a bistable potenti¥(x), subjected to a time-
nomenon usually requires approximations, the most relevarteriodic forceA(t) =A, cosQt and external noisg(t), de-
being the assumption of strong damping and a driving freScribed by the following Langevin equati¢f] (the overdot
quency that is well below the system characteristic frequendenotes time differentiation

cies(the so-called adiabatic approximatjofror large damp-

ing, the full inertial dynamics of the relevant observable can . Y

be simplified through an adiabatic elimination of the “veloc- X= = yX— o+ Ag COsOL+&(1). (N
ity” variable, thus reducing the description to the over-

damped motion of a point particle in a bistable potential. Th . .
need for a driving frequency that is much smaller than anf]—lere, ¢(t) denotes an exponentially correlated Gaussian

other internal characteristic frequency arises from the nece$'9'S® with zero mean and autocorrelatidi(t) £(0))
sity of describing the stochastic dynamics under a clear-cut @~ €XP([t//7), 7 and o being the noise correlation time
separation between time scales. In a generic overdamped standard deviation, respectivélly the following we use
bistable system one confronts the escape time gchkrac- the noise intensityD, which is related too and = by D
terizing interwell jumpstogether with the relaxation time in = 7.0?). V(X)=—ax?/2+bx*4 is the standard quartic
a single well, the former being, for small noise intensity, bistable potential §,b>0) having minima at £x,,=
much larger than the latter. For these systems, the spectral \/a/b and separated by the potential barrieV'=a?/4b.
amplitude at the drive frequency exhibits a maximum at ay>0 is the viscous damping constant. The SR in @gwas
critical noise intensity, the traditional hallmark of SR; the first discussed in Ref$9,10]. Since then, only a few papers
maximum corresponds to a matching of the driving period td11] have addressed the study of SR in the underdamped
twice the escape timfl]. bistable case, an important exception being the study of SR
in quantum systemgl2].
The dynamicgl) have been studied here via analog simu-
*Electronic address: gammaitoni@perugia.infn.it lation (see Gammaitonét al. [1], p. 252, for details of the
"Electronic address: bulsara@nosc.mil electronic simulator In Fig. 1 we show the amplitude of the
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FIG. 1. Power spectral density amplitu®w) (a.u) of the
system response(t) at the forcing frequencw =) as a function
of the noise standard deviatian (a.u), for various values ofv
=Q0/27 (in kHz). The characteristic frequencyvy(D)
=wy(D)/27 in the absence of noise igy(0)=6.00+=0.15 kHz.
Other parameter values: AgX,,/AV=0.452,y=0.477.=4.5
+0.2 us. Inset: corresponding curvéfom top 5.50 kHz, 5.00

kHz, 4.50 kHz and 3.75 kHzplotted versuD =D/(yAV).
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damping parameters and signal frequencies in a certain
range.

A phenomenological description of the behavior detailed
in Figs. 1 and 2 can readily be provided. At extremely low
damping(see Fig. 2, even a smal(broadbangl perturbation
can lead to noise-assisted hopping; the interwell motion
clearly dominates the dynamics at small noise intensity also
and the synchronization of the hopping ratddae-halj the
external signal frequency characterizes thimgle peak in
the spectral amplitude, thus resulting in tteonventional
SR phenomenon. With increasing damping, one observes
two peaks inS({) but only when the forcing frequency
takes values around the unperturbed characteristic frequency
at the bottom of the wells. In this case, the motion is a com-
bination of interwell hopping and small oscillations in the
bottom of the wells. The latter motion dominates for low
noise and is approximately harmonic: the system response
amplitude changes as a function of the forcing frequeticy
following the forced harmonic oscillator law. When the noise
intensity is increased, for a fixed value 6f, the system
motion becomes more complex with nonlinear featspe-
cifically, the profile of the single wellcoming into play. For
such a nonlinear oscillator we can defineclaaracteristic
frequencywq(D) which is a function of the amplitude of the
motion and, thus, of the noise intensily= r.o?; the low-

the forcing frequency), as a function of the noise intensity. noise peak corresponds b~ wq(D). As the noise increases

For a certain range of frequency valuesg@uble resonant

even further, the hopping motion begins to dominate, and

peak structure is evident: the peak at higher noise can bene recovers the usuéingle-peakedSR behavior.

interpreted(see below as the usual SR peak, due to the

In the absence of a signal, the Kramers rate or one of its

synchronization of the jumps between the potential wellsgeneralization$13] for low friction may be used to charac-
with the external forcing, while the peak at smaller noiseterize the interwell hopping. Wh|le such a F:haracterlzatlon
intensity values is due to an intrawell resonance characteforms the cornerstone of theoretical descriptions of SR under

ized by the matching of the external forcing frequeriey

adiabatic conditiongperiodic forcing with frequency much

with the (noise-dependehtcharacteristic frequency of the lower than the system characteristic frequengigsfails to
nonlinear oscillations in a single well of the potential. Whendescribe the dynamics in the presence of nonadiabatic con-

a single peak occursee, e.g., the 2.20 kHz cunyéopping

ditions (i.e., high-frequency forcing as in tHe =3.75 kHz

dominates the dynamics. Clearly, both resonances co@tist case of Fig. 2, to be compared to the 6.00 kHz of the unper-
different noise intensitigsover only a narrow range of the turbed system characteristic frequeneyhich generate the
drive frequency), for a certain choice of system parameters.lower-noise maximum in the spectral amplitude, when the

A plot (Fig. 2) of the spectral amplitud&({}) vs the noise

double maximum exists. Hence a simple adiabatic thgbfy

intensity for different damping parameters elucidates soméannot be applied to the system in this case. The breakdown
of the phenomena alluded to above; most importantly, wedf the adiabatic conditions is also responsible for the absence
observe that the double resonance appears to occur only fof the well-known[13] crossoveras y increases from 0) in
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FIG. 2. S(Q) (a.u) vs o (a.u) as in Fig. 1, for various damping
parametersy=3.75 kHz. Other parameters as in Fig. 1.

the Kramers rate in the curves of Fig. 2 for fixed values of
noise in the interwell SR regiméompare with the low-
frequency curves in Fig. 6 dfLO]).

We now compute the noise-dependent characteristic fre-
quencywy(D) and investigate the approximate matchiig
~ wg(D). First we note that the characteristic frequency for
the nonlinear oscillator with energy can be estimated by
computing the inverse of twice the deterministic transit time
[14] from one extremum of the oscillation interval to the
other, within the same well. Denoting these extreifioa the
right well) by x.(x_<x,), we have for twice the transit
time,

X+ dx
K=t ?

with the extrema computed via the intersectier V(x) in
the right well:
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After some computation, we obtaifi(E) in terms of the
complete elliptic integra(KC) of the first kind[15]

2 2
T(E)= Z\[B’C(O')’ @

where we setj= /X2 — X2 /X, .

In the presence of noise, we repldedy E, the average
energy. To comput& we note that for weak damping and

low noise the energy is approximately a constant of motion.

Writing the dynamicg1) in terms of the position and energy
variables &,E), we may write down a two-dimensiongD)
Fokker-Planck equatiofFPE for the time evolution of the
joint probability density functionW(x,E,t), whence thex
variable may be integrated o{it6], leaving us with a 1D
FPE forW(E,t), the energy density function,

iW(Et)— i ﬁ—E)W(E t)l
a TN E ey v
7 | ¢(E)
E mW(E,t) s (5)
with the identifications
(E)—f VE—V(X)dX,
(E)=2 f [ (®)
¢'(E)= 2)x \/E—V(X).

We have taken the noise to be Gaussiarcorrelated,
having zero mean and correlation functidig(t)&(t'))
=2D§(t—t') (the 7.—0 limit of the correlated noise de-
fined earliey. Equation(5) has the steady state solution

L (E) £/ (2)
W(E)=N"* b (E) - p( F’U #(2) dz) @

with N a normalization constant, arb(E), ¢’ (E) expressed
in terms of the complete elliptic integrals of the fif&f) and
second(€) kind [15]:

¢'(B) _ 3
#(E)  4AV(1+ J1+E/AV)

K(q)
><g(q)—(1+ JI+E/AV)K(q)

8

From the energy probability density functidM(E) we com-
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FIG. 3. Power spectral densif(w) (a.u) as a function of the
frequency, for various noise intensities: squakkes 0.00, circles
D=0.04, up triangle® =0.13, down triangle® = 0.20, diamonds
D=0.32, (same data as in Fig.) lInset: (data points measured
eigenfrequenciesy(D) = wo(D)/27 as a function of the noise in-
tensity, and(continuous ling theoretical prediction.

The above calculation has been carried out for white noise
and in the absence of the periodic forcing. To take into ac-
count the additional energy contribution coming from the
periodic forcing we added the energy due to the forcing itself
by approximating the system respor(s¢ resonangeto the
periodic signal by that of a harmonic oscillator of natural
frequencywy(D). For the small amplitude value of the forc-
ing used here, the additional contribution turns out to be

smaller than 5% of the unperturbed mean enefgyThe
white noise approximation is justified here by the choice of a
simulated noise bandwidth larger than any other intrinsic fre-
quency 35 kHz).

To compare our theoretical prediction fep(D) with ex-
perimental results, we plot the analog-simulated spectral am-
plitude curves of Fig. 1 as a function of the frequency, for
various noise intensitie@=ig. 3), and determine the charac-
teristic frequency values at the maxima of the resonant
curves. These characteristic frequencies are then plotted
against the theoretical prediction in the inset of Fig. 3; the
agreement, in the low-noise regime and for the weak signal
amplitude considered here, is remarkable. The shift of the
characteristic frequency to lower values with increasing
noise intensity is apparent and is well reproduced by the
theoretical predictioncontinuous ling On comparing the
values of the frequencies for which we have the presence of
the first peak with theoretical predictions, it is apparent that
the strength of the peak is greater when the matching condi-
tion is more closely satisfied. For example, far
=5.50 kHz the peak is near its maximuinset in Fig. 2

and the position is located atD=0.075-0.020D

=D/(yAV)], to be compared with a prediction db
~0.085. On decreasing the frequency the position of the
peak is supposed to move toward higher noise values. This
behavior is contrasted with that of the low-noise tail of the
interwell SR peak, which tends to move toward lower noise

pute, numerically, the average energy as a function of thgajues and, for low-frequency values, dominates until the

noise |ntenS|tyE(D) which is then substituted into E¢)
to compute the characteristic frequeney(D).

intrawell motion is no longer effective.
A large number of nonlinear dynamic systems and pro-
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cesses may be approximated by underdamped dynamics of{x) is bistable. A more detailed description ofdamping and
the form (1), albeit with different(monostable or bistable noise color effects will appear in a future publication.
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