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Intrawell stochastic resonance versus interwell stochastic resonance
in underdamped bistable systems
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We show that, for periodically driven noisy underdamped bistable systems, an intrawell stochastic resonance
can exist, together with the conventional interwell stochastic resonance, resulting in a double maximum in the
power spectral amplitude at the forcing frequency as a function of the noise intensity. The locations of the
maxima correspond to matchings of deterministic and stochastic time scales in the system. In this paper we
present experimental evidence of these phenomena and a phemonological nonadiabatic description in terms of
a noise-controlled nonlinear dynamic resonance.

PACS number~s!: 05.40.Ca, 85.30.De
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The occurrence of the stochastic resonance~SR! phenom-
enon in physical systems is, by now, well documented@1#.
SR is a noise-induced cooperative phenomenon, manife
bistable systems, wherein the response to a subthres
time-periodic force can be enhanced in the presence o
optimal amount of noise. Since its inception@2#, when it was
proposed as a possible explanation for the periodicity of
ice ages, SR has been studied in a variety of nonlinear
namic models, and experimentally observed in a numbe
physical systems~see, e.g.,@1#!, including lasers@3#, electron
paramagnetic resonance spectrometers@4#, superconducting
quantum interference devices@5#, various electronic and
magnetic devices@6#, and neurophysiology@7#.

Due to the intrinsic complexity of the nonlinear dynami
in the presence of deterministic~periodic driving! and sto-
chastic ~noise! forces, theoretically modeling the SR ph
nomenon usually requires approximations, the most relev
being the assumption of strong damping and a driving
quency that is well below the system characteristic frequ
cies~the so-called adiabatic approximation!. For large damp-
ing, the full inertial dynamics of the relevant observable c
be simplified through an adiabatic elimination of the ‘‘velo
ity’’ variable, thus reducing the description to the ove
damped motion of a point particle in a bistable potential. T
need for a driving frequency that is much smaller than a
other internal characteristic frequency arises from the ne
sity of describing the stochastic dynamics under a clear
separation between time scales. In a generic overdam
bistable system one confronts the escape time scale~charac-
terizing interwell jumps! together with the relaxation time in
a single well, the former being, for small noise intensi
much larger than the latter. For these systems, the spe
amplitude at the drive frequency exhibits a maximum a
critical noise intensity, the traditional hallmark of SR; th
maximum corresponds to a matching of the driving period
twice the escape time@1#.
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In this work we take a different approach, dispensing w
both the above approximations, and studying the comp
inertial dynamics under broadband noise and a time-perio
driving signal. We show that in this case a resonant phen
enon ~intrawell SR! appears, for a range of parameters,
addition to the classical~i.e., interwell! SR. SR in
monostable systems~specifically, the underdamped single
well Duffing oscillator! was first reported in@8#, while ‘‘con-
ventional’’ SR in an underdamped bistable system was fi
addressed in@9#. In this paper we show the coexistenc
competition between these effects, over a certain range
system and forcing parameters, in an underdamped bist
system.

We consider the Brownian motion of a point particle
unit mass in a bistable potentialV(x), subjected to a time-
periodic forceA(t)5A0 cosVt and external noisej(t), de-
scribed by the following Langevin equation@1# ~the overdot
denotes time differentiation!:

ẍ52g ẋ2
]V

]x
1A0 cosVt1j~ t !. ~1!

Here, j(t) denotes an exponentially correlated Gauss
noise with zero mean and autocorrelation^j(t)j(0)&
5s2 exp(2utu/tc), tc ands being the noise correlation tim
and standard deviation, respectively~in the following we use
the noise intensityD, which is related tos and t by D
5tcs

2). V(x)52ax2/21bx4/4 is the standard quartic
bistable potential (a,b.0) having minima at 6xm5
6Aa/b and separated by the potential barrierDV5a2/4b.
g.0 is the viscous damping constant. The SR in Eq.~1! was
first discussed in Refs.@9,10#. Since then, only a few paper
@11# have addressed the study of SR in the underdam
bistable case, an important exception being the study of
in quantum systems@12#.

The dynamics~1! have been studied here via analog sim
lation ~see Gammaitoniet al. @1#, p. 252, for details of the
electronic simulator!. In Fig. 1 we show the amplitude of th
299 ©2000 The American Physical Society
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power spectral densityS(V) of the system responsex(t) at
the forcing frequencyV, as a function of the noise intensity
For a certain range of frequency values, adouble resonant
peak structure is evident: the peak at higher noise can
interpreted~see below! as the usual SR peak, due to th
synchronization of the jumps between the potential we
with the external forcing, while the peak at smaller no
intensity values is due to an intrawell resonance charac
ized by the matching of the external forcing frequencyV
with the ~noise-dependent! characteristic frequency of th
nonlinear oscillations in a single well of the potential. Wh
a single peak occurs~see, e.g., the 2.20 kHz curve!, hopping
dominates the dynamics. Clearly, both resonances coexis~at
different noise intensities! over only a narrow range of th
drive frequencyV, for a certain choice of system paramete
A plot ~Fig. 2! of the spectral amplitudeS(V) vs the noise
intensity for different damping parameters elucidates so
of the phenomena alluded to above; most importantly,
observe that the double resonance appears to occur onl

FIG. 1. Power spectral density amplitudeS(v) ~a.u.! of the
system responsex(t) at the forcing frequencyv5V as a function
of the noise standard deviations ~a.u.!, for various values ofn
5V/2p ~in kHz!. The characteristic frequencyn0(D)
5v0(D)/2p in the absence of noise isn0(0)56.0060.15 kHz.
Other parameter values: A0xm /DV50.452,g50.47,tc54.5
60.2 ms. Inset: corresponding curves~from top 5.50 kHz, 5.00

kHz, 4.50 kHz and 3.75 kHz! plotted versusD̃5D/(gDV).

FIG. 2. S(V) ~a.u.! vs s ~a.u.! as in Fig. 1, for various damping
parameters.n53.75 kHz. Other parameters as in Fig. 1.
be
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damping parameters and signal frequencies in a cer
range.

A phenomenological description of the behavior detai
in Figs. 1 and 2 can readily be provided. At extremely lo
damping~see Fig. 2!, even a small~broadband! perturbation
can lead to noise-assisted hopping; the interwell mot
clearly dominates the dynamics at small noise intensity a
and the synchronization of the hopping rate to~one-half! the
external signal frequency characterizes the~single! peak in
the spectral amplitude, thus resulting in the~conventional!
SR phenomenon. With increasing damping, one obse
two peaks inS(V) but only when the forcing frequenc
takes values around the unperturbed characteristic frequ
at the bottom of the wells. In this case, the motion is a co
bination of interwell hopping and small oscillations in th
bottom of the wells. The latter motion dominates for lo
noise and is approximately harmonic: the system respo
amplitude changes as a function of the forcing frequencyV,
following the forced harmonic oscillator law. When the noi
intensity is increased, for a fixed value ofV, the system
motion becomes more complex with nonlinear features~spe-
cifically, the profile of the single well! coming into play. For
such a nonlinear oscillator we can define acharacteristic
frequencyv0(D) which is a function of the amplitude of th
motion and, thus, of the noise intensityD5tcs

2; the low-
noise peak corresponds toV'v0(D). As the noise increase
even further, the hopping motion begins to dominate, a
one recovers the usual~single-peaked! SR behavior.

In the absence of a signal, the Kramers rate or one o
generalizations@13# for low friction may be used to charac
terize the interwell hopping. While such a characterizat
forms the cornerstone of theoretical descriptions of SR un
adiabatic conditions~periodic forcing with frequency much
lower than the system characteristic frequencies!, it fails to
describe the dynamics in the presence of nonadiabatic
ditions ~i.e., high-frequency forcing as in theV53.75 kHz
case of Fig. 2, to be compared to the 6.00 kHz of the unp
turbed system characteristic frequency! which generate the
lower-noise maximum in the spectral amplitude, when
double maximum exists. Hence a simple adiabatic theory@1#
cannot be applied to the system in this case. The breakd
of the adiabatic conditions is also responsible for the abse
of the well-known@13# crossover~asg increases from 0) in
the Kramers rate in the curves of Fig. 2 for fixed values
noise in the interwell SR regime~compare with the low-
frequency curves in Fig. 6 of@10#!.

We now compute the noise-dependent characteristic
quencyv0(D) and investigate the approximate matchingV
'v0(D). First we note that the characteristic frequency
the nonlinear oscillator with energyE can be estimated by
computing the inverse of twice the deterministic transit tim
@14# from one extremum of the oscillation interval to th
other, within the same well. Denoting these extrema~for the
right well! by x6(x2,x1), we have for twice the transi
time,

T~E!52E
x2

x1 dx

A2~E2V~x!!
, ~2!

with the extrema computed via the intersectionE5V(x) in
the right well:
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x6~E!5Aa

b
S 16A11

E

DVD . ~3!

After some computation, we obtainT(E) in terms of the
complete elliptic integral~K! of the first kind@15#

T~E!5
2

x1
A2

b
K~q!, ~4!

where we setq5Ax1
2 2x2

2 /x1 .

In the presence of noise, we replaceE by Ē, the average
energy. To computeĒ we note that for weak damping an
low noise the energy is approximately a constant of moti
Writing the dynamics~1! in terms of the position and energ
variables (x,E), we may write down a two-dimensional~2D!
Fokker-Planck equation~FPE! for the time evolution of the
joint probability density functionW(x,E,t), whence thex
variable may be integrated out@16#, leaving us with a 1D
FPE forW(E,t), the energy density function,

]

]t
W~E,t !5gF ]

]E S f~E!

f8~E!
2

D

g D W~E,t !G
1D

]2

]E2 F f~E!

f8~E!
W~E,t !G , ~5!

with the identifications

f~E!5E
x2

x1AE2V~x!dx,

f8~E!5
1

2Ex2

x1 dx

AE2V~x!
. ~6!

We have taken the noise to be Gaussiand correlated,
having zero mean and correlation function^j(t)j(t8)&
52Dd(t2t8) ~the tc→0 limit of the correlated noise de
fined earlier!. Equation~5! has the steady state solution

W~E!5N21
f~E!

f8~E!
expS 2

gE

D DexpS EEf8~z!

f~z!
dzD ~7!

with N a normalization constant, andf(E),f8(E) expressed
in terms of the complete elliptic integrals of the first~K! and
second~E! kind @15#:

f8~E!

f~E!
5

3

4DV~11A11E/DV!

3
K~q!

E~q!2~11A11E/DV!K~q!
. ~8!

From the energy probability density functionW(E) we com-
pute, numerically, the average energy as a function of
noise intensityĒ(D), which is then substituted into Eq.~4!
to compute the characteristic frequencyv0(D).
.

e

The above calculation has been carried out for white no
and in the absence of the periodic forcing. To take into
count the additional energy contribution coming from t
periodic forcing we added the energy due to the forcing its
by approximating the system response~at resonance! to the
periodic signal by that of a harmonic oscillator of natur
frequencyv0(D). For the small amplitude value of the forc
ing used here, the additional contribution turns out to
smaller than 5% of the unperturbed mean energyĒ. The
white noise approximation is justified here by the choice o
simulated noise bandwidth larger than any other intrinsic f
quency (.35 kHz).

To compare our theoretical prediction forv0(D) with ex-
perimental results, we plot the analog-simulated spectral
plitude curves of Fig. 1 as a function of the frequency,
various noise intensities~Fig. 3!, and determine the charac
teristic frequency values at the maxima of the reson
curves. These characteristic frequencies are then plo
against the theoretical prediction in the inset of Fig. 3; t
agreement, in the low-noise regime and for the weak sig
amplitude considered here, is remarkable. The shift of
characteristic frequency to lower values with increas
noise intensity is apparent and is well reproduced by
theoretical prediction~continuous line!. On comparing the
values of the frequencies for which we have the presenc
the first peak with theoretical predictions, it is apparent t
the strength of the peak is greater when the matching co
tion is more closely satisfied. For example, forn
55.50 kHz the peak is near its maximum~inset in Fig. 1!
and the position is located atD̃50.07560.020@D̃

5D/(gDV)#, to be compared with a prediction ofD̃
'0.085. On decreasing the frequency the position of
peak is supposed to move toward higher noise values. T
behavior is contrasted with that of the low-noise tail of t
interwell SR peak, which tends to move toward lower no
values and, for low-frequency values, dominates until
intrawell motion is no longer effective.

A large number of nonlinear dynamic systems and p

FIG. 3. Power spectral densityS(v) ~a.u.! as a function of the

frequency, for various noise intensities: squaresD̃50.00, circles

D̃50.04, up trianglesD̃50.13, down trianglesD̃50.20, diamonds

D̃50.32, ~same data as in Fig. 1!. Inset: ~data points! measured
eigenfrequenciesn0(D)5v0(D)/2p as a function of the noise in
tensity, and~continuous line! theoretical prediction.
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cesses may be approximated by underdamped dynamic
the form ~1!, albeit with different~monostable or bistable!
forms of the potential energy functionV(x); as examples we
offer normal modes in hydrodynamic media and dynam
excitations in lattices. In this work we discussed the appe
ance of an additional reso-nance due to the intrawell osc
tor dynamics and its relationship with the damping wh
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V(x) is bistable. A more detailed description ofdamping a
noise color effects will appear in a future publication.
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