581 research outputs found

    Performance Assessment of ESP8266 Wireless Mesh Networks

    Get PDF
    This paper presents a wireless mesh network testbed based on ESP8266 devices using painlessMesh library. It evaluates its feasibility and potential effectiveness as a solution to monitor perishable goods, such as fresh fruit and vegetables, which are often stored and transported inside refrigerated containers. Performance testing experiments with different numbers of nodes and traffic loads and different message payload sizes are conducted under unicast transmission. The impact on network performance is evaluated in terms of delivery ratio and delivery delay, which, consequently, affect the energy consumption and, hence, network lifetime. The results of this investigation are an important contribution to help researchers to propose mechanisms, schemes, and protocols to improve performance in such challenging networks.info:eu-repo/semantics/publishedVersio

    Analysis of the dynamic air conditioning loads, fuel consumption and emissions of heavy-duty trucks with different glazing and paint optical properties

    Get PDF
    The European transportation sector employs 10 million people and accounts for 4.6% of the European Union GDP. Due to climate change, this workforce is increasingly affected by high temperatures and radiant loads, particularly during summer. They rely on air conditioning (AC) to minimize heat inside the truck cabins, increasing fuel consumption and tailpipe emissions. Because sustainable transportation is crucial for climate change mitigation, we developed a numerical investigation on the dynamic thermal exchanges of cabins of heavy-duty trucks in realistic conditions of a summer workday, to quantify the potential impact of interventions in the glazing and paint optical properties, over the truck AC loads. We observed that the changes in air temperature and solar irradiation throughout the workday imply substantial variations in the truck's AC loads and, consequently, in its fuel consumption and tailpipe emissions. Furthermore, windshields and side windows with transmissivity of 0.33 instead of typical 0.79 and 0.84, respectively, can reduce AC loads by up to 16%. External paints with reflectivity of 0.70 instead of 0.04 can reduce the AC loads by up to 30%, whereas cumulative changes to glazing and paint can reduce the AC load by up to 40%. These interventions can lower fuel consumption and emissions by up to 0.4%. These results show that important improvements in fuel efficiency and tailpipe emissions are possible, if the research community, policy makers and industry stakeholders successfully promote the adaptation of the European transportation fleet

    In-situ hot forging directed energy deposition-arc of CuAl8 alloy

    Get PDF
    Funding Information: Authors acknowledge the Portuguese Fundação para a Ciência e a Tecnologia ( FCT - MCTES ) for its financial support via the project UID/EMS/00667/2019 (UNIDEMI). VD acknowledges Portuguese Fundação para a Ciência e a Tecnologia ( FCT - MCTES ) for funding the PhD grant SFRH/BD/139454/2018 . TAR acknowledges Portuguese Fundação para a Ciência e a Tecnologia ( FCT - MCTES ) for funding the PhD grant SFRH/BD/144202/2019 . Funding of CENIMAT/i3N by national funds through the Portuguese Fundação para a Ciência e a Tecnologia, I.P., within the scope of Multiannual Financing of R&D Units , reference UIDB/50025/2020–2023 is also acknowledge. This activity has received funding from the European Institute of Innovation and Technology (EIT) Raw Materials through the project Smart WAAM: Microstructural Engineering and Integrated Non-Destructive Testing. This body of the European Union receives support from the European Union's Horizon 2020 research and innovation programme. Parts of this research were carried out at PETRA III at DESY, a member of the Helmholtz Association. The research leading to this result has been supported by the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020 . This project has received funding from the EU-H2020 research and innovation programme under grant agreement No 654360 having benefitted from the access provided by PETRA III at DESY in Hamburg, Germany within the framework of the NFFA-Europe Transnational Access Activity. The authors acknowledge support by OCAS NV and GUARENTEED via Joachim Antonissen. Funding Information: Authors acknowledge the Portuguese Fundação para a Ciência e a Tecnologia (FCT - MCTES) for its financial support via the project UID/EMS/00667/2019 (UNIDEMI). VD acknowledges Portuguese Fundação para a Ciência e a Tecnologia (FCT - MCTES) for funding the PhD grant SFRH/BD/139454/2018. TAR acknowledges Portuguese Fundação para a Ciência e a Tecnologia (FCT - MCTES) for funding the PhD grant SFRH/BD/144202/2019. Funding of CENIMAT/i3N by national funds through the Portuguese Fundação para a Ciência e a Tecnologia, I.P. within the scope of Multiannual Financing of R&D Units, reference UIDB/50025/2020–2023 is also acknowledge. This activity has received funding from the European Institute of Innovation and Technology (EIT) Raw Materials through the project Smart WAAM: Microstructural Engineering and Integrated Non-Destructive Testing. This body of the European Union receives support from the European Union's Horizon 2020 research and innovation programme. Parts of this research were carried out at PETRA III at DESY, a member of the Helmholtz Association. The research leading to this result has been supported by the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. This project has received funding from the EU-H2020 research and innovation programme under grant agreement No 654360 having benefitted from the access provided by PETRA III at DESY in Hamburg, Germany within the framework of the NFFA-Europe Transnational Access Activity. The authors acknowledge support by OCAS NV and GUARENTEED via Joachim Antonissen. Remark: The supplementary material is temporarily available in the Drive folder here: https://drive.google.com/drive/folders/1SFFlhJlmL5p3IkQis8cB6UVWva3wozGi?usp=sharing. Publisher Copyright: © 2022 Elsevier B.V.CuAl8 alloy finds applications in industrial components, where a good anti-corrosion and anti-wearing properties are required. The alloy has a medium strength and a good toughness with an elongation to fracture at room temperature of about 40%. Additionally, it has a good electrical conductivity, though lower than that of pure Al or pure Cu. Despite these characteristics, additive manufacturing of the CuAl8 alloy was not yet reported. In this work, the direct energy deposition-arc (DED-arc) with and without in-situ hot forging was used to determine the microstructure evolution and mechanical properties. No internal defects were seen on the parts produced. Hot forging combined with DED-arc was seen to reduce and homogenize the grain size, improve mechanical strength and isotropy of mechanical properties. Moreover, the use of this novel DED-arc variant was seen to reduce the magnitude of residual stresses throughout the fabricated part. We highlight that this alloy can be processed by DED-arc, and the hot forging operation concomitant with the material deposition has beneficial effects on the microstructure refinement and homogenization.publishersversionpublishe

    SiO2·p-TSA: a green catalyst for solvent-free tetrahydropyranylation of alcohols and thiols

    Full text link
    A solvent-free procedure for tetrahydropyranylation of alcohols and thiols based on a simple grinding of the reagents in the presence of silica gel and catalytic amounts of p-TSA is described

    Embedded fiber sensors to monitor temperature and strain of polymeric parts fabricated by additive manufacturing and reinforced with NiTi wires

    Get PDF
    POCI-01-0145-FEDER-016414 (FIBR3D) BI/UI96/6642/2018 BI/UI96/6643/2018 PD/BD/128265/2016 UID/CTM/50025/2019 UIDB/00667/2020 FCT-SFRH/BD/146885/2019 UIDB/50025/2020 UIDP/50025/2020This paper focuses on three main issues regarding Material Extrusion (MEX) Additive Manufacturing (AM) of thermoplastic composites reinforced by pre-functionalized continuous Nickel–Titanium (NiTi) wires: (i) Evaluation of the effect of the MEX process on the properties of the pre-functionalized NiTi, (ii) evaluation of the mechanical and thermal behavior of the composite material during usage, (iii) the inspection of the parts by Non-Destructive Testing (NDT). For this purpose, an optical fiber sensing network, based on fiber Bragg grating and a cascaded optical fiber sensor, was successfully embedded during the 3D printing of a polylactic acid (PLA) matrix reinforced by NiTi wires. Thermal and mechanical perturbations were successfully registered as a consequence of thermal and mechanical stimuli. During a heating/cooling cycle, a maximum contraction of ≈100 µm was detected by the cascaded sensor in the PLA material at the end of the heating step (induced by Joule effect) of NiTi wires and a thermal perturbation associated with the structural transformation of austenite to R-phase was observed during the natural cooling step, near 33.0◦ C. Regarding tensile cycling tests, higher increases in temperature arose when the applied force ranged between 0.7 and 1.1 kN, reaching a maximum temperature variation of 9.5 ± 0.1◦ C. During the unload step, a slope change in the temperature behavior was detected, which is associated with the material transformation of the NiTi wire (martensite to austenite). The embedded optical sensing methodology presented here proved to be an effective and precise tool to identify structural transformations regarding the specific application as a Non-Destructive Testing for AM.publishersversionpublishe

    The use of ionic liquids in the processing of chitosan/silk hydrogels for biomedical applications

    Get PDF
    Natural polymers are adequate renewable resources for the processability of well-defined architectures for several applications. Combinations of polysaccharides and proteins may mimic the naturally occurring environment of certain tissues. The main goal of this work renders the application of green chemistry principles, namely the use of ionic liquids (ILs) and biorenewable sources, such as chitosan (CHT) and silkfibroin (SF), to process new hydrogel-based constructs. Although the solubilization of both materials in ILs has been studied individually, this work reports, for the first time, the role of ILs as solvent, for the production of hydrogels from blends of chitosan and silkfibroin (CSF). These systems offer the advantage of being homogeneous and presenting easy and short dissolution time of both biomacromolecules. Moreover, the use of chitosan obtained fromα- andβ-chitin allowed the production of blended hydrogels with distinct physical–chemical properties.In vitroassays demonstrated that these hydrogels supported the adhesion and growth of primary human dermalfibroblasts. Taken these properties together, the CSF hydrogels might be promising biomaterials to be explored for skin tissue engineering approaches.Fundação para a Ciência e a Tecnologia FCT - SFRH/BPD/45307/2008, SFRH/BPD/ 34704/2007, SFRH/BD/64601/2009, PTDC/QUI/68804/2006FEDER - POCTEP 0330_IBEROMARE_1_P

    Protesto político e atividade policial: a perceção dos media

    Get PDF
    Protesto político e atividade policial: a perceção dos media. Os media participam na construção da imagem das instituições na sociedade, importando conhecer melhor os assuntos a que as pessoas são expostas quotidianamente. No caso da polícia, instituição estratégica no sistema social, este tópico é importante. Os conteúdos transmitidos acerca do trabalho policial constituem-se num discurso que vai refletir--se na formação da perceção das pessoas. A construção deste enquadramento sociopolítico, ao longo do tempo, estabelecerá um território discursivo onde se configurarão representações da polícia que podem influenciar o comportamento social. Neste artigo procurou-se caracterizar o discurso dos media portugueses acerca da atividade policial em grandes eventos políticos, durante o ano de 2012.info:eu-repo/semantics/publishedVersio

    The African hind's (Cephalopholis taeniops, serranidae) use of artificial reefs off Sal Island (Cape Verde): a preliminary study based on acoustic telemetry

    Get PDF
    The African hind Cephalopholis taeniops (Valenciennes, 1828) is one of the most important commercial demersal species caught in the Cape Verde archipelago. The species is closely associated with hard substrate and is one of the main attractions for SCUBA divers. In January 2006 a former Soviet fishing vessel - the Kwarcit - was sunk off Santa Maria Bay (Sal Island). Young C. taeniops are commonly observed in this artificial reef (AR). In order to investigate the species' use of the AR, 4 specimens were captured and surgically implanted underwater with Vemco brand acoustic transmitters. The fish were monitored daily with an active telemetry receiver for one week after release. Simultaneously, an array of 3 passive VR2 / VR2W receivers was set for 63 days, registering data that allowed an analysis of spatial, daily and short term temporal activity patterns. The results showed site fidelity to the AR, with no migrations to the nearby natural reef. The method used allowed to register a consistent higher activity during daytime and a preference for the area opposite the dominant current
    corecore