3,591 research outputs found

    A socio-historical analysis of the American steel industry, 1865-1929: Factory closures in the cycle of capitalist development

    Get PDF
    The case of the development of the American steel industry from 1865-1929 is used in a socio-historical analysis of factory closures in order to critically address the theory of deindustrialization, influential in much current sociological work, developed by writers such as Bluestone and Harrison (1982). The historiography of the steel industry is analyzed in order to examine the role of factory closures in the formation and disformation of the nation\u27s basic capacity to produce by comparing the course of steel industry development from Reconstruction through the first thirty years of the twentieth century to that following the Second World War, especially the development of the industry subsequent to 1970--the so-called deindustrialization wave. This approach is intended to overcome problems associated with the limited historical scope characteristic of current literature on deindustrialization. By focusing on the transition from iron to steel production in the domestic context, the Homestead Strike of 1892, the formation of the United States Steel Corporation in 1901, and the rise of steel producing centers like Youngstown, Ohio, and Gary, Indiana, as well as by analyzing national economic policy, e.g., protectionism, and community case studies, several conclusions are reached. Factory closures are found to have played an important role in both development and dismantling of the domestic steel industry so that the contemporary nature of factory closures is found not to reflect an aberration of an otherwise healthy accumulation process specific to the current era. Since factory closures play essentially the same role in industrialization and deindustrialization, it is suggested that such events are better understood within the process of the reproduction of capitalist society as firms act to re-create the social conditions--i.e., class and market relations--under which capital accumulation is possible. Specifically, factory closures historically enter: (1) the cycle of labor control as events which re-create the conditions under which labor-power is bought and sold, (2) the cycle of capitalist competition as capitalists compete for control over production and markets, and (3) the organization of geographic space in a way which facilitates capital accumulation

    The relevance of aerosol in the retrieval of tropospheric NO2 from satellite - a study of model data applicability

    Get PDF
    Nitrogen dioxide (NO2) is a key pollutant in the troposphere, being one of the main precursors of tropospheric ozone, and source of nitric acid, as well as contributing to global climate change. Tropospheric NO2 vertical columns can be determined from satellite observations, although some uncertainties are still associated with the retrieval process. The conversion from measured slant columns to vertical columns is accomplished with airmass factors (AMF) that are determined by radiative transfer (RT) models. While the measurement (instrumental) conditions are well assessed, improvement is still needed regarding the a priori information of atmospheric characteristics required for the estimation of AMFs (e.g., vertical distribution of the gas, aerosol loading and clouds). This thesis presents a sensitivity study focused on the impact of aerosol on the tropospheric NO2 AMF. Optical properties, size distribution, and vertical distribution of the aerosol were varied within several scenarios. Overall, the results show a tendency for two main opposite effects. On the one hand, enhancement of the measurement sensitivity occurs by means of multiple scattering, when aerosol is mixed with the trace gas. On the other hand, a shielding effect by an aerosol layer located above the NO2 is also verified. The identified pivotal factors for the AMF calculations were the relative vertical distribution of aerosol and NO2, the aerosol optical depth and the single scattering albedo, as well as the surface reflectance. A case study was developed, focusing on the impact on the NO2 measurements of volcanic ash emitted from Eyjafjallajökull during the spring of 2010. Aerosol and NO2 data from the EURAD chemical transport model (CTM) were used to design scenarios for the RT calculations. A small variation of AMFs was found, revealing that, in the days and region analysed, the satellite observations of NO2 were not significantly affected by the mentioned eruption. Nonetheless, it was verified that the conclusions of the study are dependent on the accuracy of the CTM data, and on the approach employed to account for (and determine) aerosol optical properties. Such findings highlight the potential challenges that can be faced in the future if model data are used in satellite retrievals. In addition, a model evaluation performed within the GEMS project is described, where global stratospheric and tropospheric NO2 columns predicted by two chemical transport models MOZART and TM5 are compared with SCIAMACHY observations. The evaluation exercise allowed for the identification of flaws in the model systems, showing problems with the prediction of high levels of pollution in some regions (e.g., East-Asia), and with the simulation of NO2 concentrations during biomass burning events

    perFORMative Design: Investigating Form in the Natural and Capitalist Environment

    Get PDF
    Rethinking the design process from conception and allowing natural forces, such as wind, solar exposure, and rainfall to drive the initial design will generate a structurally and environmentally efficient form

    Scalability of self-stratifying microbial fuel cell: Towards height miniaturisation

    Get PDF
    © 2019 The Authors The scalability of bioelectrochemical systems is a key parameter for their practical implementation in the real-world. Up until now, only urine-fed self-stratifying microbial fuel cells (SSM-MFCs) have been shown to be scalable in width and length with limited power density losses. For practical reasons, the present work focuses on the scalability of SSM-MFCs in the one dimension that has not yet been investigated, namely height. Three different height conditions were considered (1 cm, 2 cm and 3 cm tall electrodes). The normalised power density of the 2 cm and 3 cm conditions were similar either during the durability test under a hydraulic retention time of ≈39 h (i.e. 15.74 ± 0.99 μW.cm −3 ) and during the polarisation experiments (i.e. 27.79 ± 0.92 μW.cm −3 ). Conversely, the 1 cm condition had lower power densities of 11.23 ± 0.07 μW.cm −3 and 17.73 ± 3.94 μW.cm −3 both during the durability test and the polarisation experiment, respectively. These results confirm that SSM-MFCs can be scaled in all 3 dimensions with minimal power density losses, with a minimum height threshold for the electrode comprised between 1 cm and 2 cm

    Scalability and stacking of self-stratifying microbial fuel cells treating urine

    Get PDF
    The scalability of Microbial fuel cells (MFCs) is key to the development of stacks. A recent study has shown that self-stratifying membraneless MFCs (S-MFCs) could be scaled down to 2 cm without performance deterioration. However, the scaling-up limit of S-MFC is yet unknown. Here the study evaluates the scale-up height of S-MFCs treating urine, from 2 cm, 4 cm to 12 cm high electrodes. The electrochemical properties of the S-MFCs were investigated after steady-states were established, following a 70-days longevity study. The electrochemical properties of the 2 cm and 4 cm conditions were similar (5.45 ± 0.32 mW per cascade). Conversely, the 12 cm conditions had much lower power output (1.48 ± 0.15 mW). The biofilm on the 12 cm cathodes only developed on the upper 5–6 cm of the immersed part of the electrode suggesting that the cathodic reactions were the limiting factor. This hypothesis was confirmed by the cathode polarisations showing that the 12 cm S-MFC had low current density (1.64 ± 9.53 µA cm−2, at 0 mV) compared to the other two conditions taht had similar current densities (192.73 ± 20.35 µA cm−2, at 0 mV). These results indicate that S-MFC treating urine can only be scaled-up to an electrode height of around 5–6 cm before the performance is negatively affected

    Scaling up self-stratifying supercapacitive microbial fuel cell

    Get PDF
    Self-stratifying microbial fuel cells with three different electrodes sizes and volumes were operated in supercapacitive mode. As the electrodes size increased, the equivalent series resistance decreased, and the overall power was enhanced (small: ESR = 7.2 Ω and Pmax = 13 mW; large: ESR = 4.2 Ω and Pmax = 22 mW). Power density referred to cathode geometric surface area and displacement volume of the electrolyte in the reactors. With regards to the electrode wet surface area, the large size electrodes (L-MFC) displayed the lowest power density (460 μW cm−2) whilst the small and medium size electrodes (S-MFC, M-MFC) showed higher densities (668 μW cm−2 and 633 μW cm−2, respectively). With regard to the volumetric power densities the S-MFC, the M-MFC and the L-MFC had similar values (264 μW mL−1, 265 μW mL−1 and 249 μW cm−1, respectively). Power density normalised in terms of carbon weight utilised for fabricating MFC cathodes-electrodes showed high output for smaller electrode size MFC (5811 μW g−1-C- and 3270 μW g−1-C- for the S-MFC and L-MFC, respectively) due to the fact that electrodes were optimised for MFC operations and not supercapacitive discharges. Apparent capacitance was high at lower current pulses suggesting high faradaic contribution. The electrostatic contribution detected at high current pulses was quite low. The results obtained give rise to important possibilities of performance improvements by optimising the device design and the electrode fabrication
    corecore