3,506 research outputs found

    Diagnóstico ecocardiográfico de endocarditis mitral y aórtica en un perro

    Get PDF
    Perro mestizo cruce de Spaniel bretón de 2 años de edad y 18 Kg de peso es referido al servicio de cardiología del Complejo Veterinario Aznalcóllar para la evaluación de un soplo cardíaco. El paciente presentaba una ligera apatía desde hacía varios días. El examen físico realizado reveló una temperatura de 40.1ºC, color de mucosas normales y frecuencia cardíaca de 168 1. P.m. Bajo auscultación, se puso de manifiesto un soplo sistólico grado IV/VI ambos audibles sobre la base cardíaca izquierda. El pulso arterial femoral era hipercinético. Debido a la sospecha de un proceso cardíaco se procedió a realizar un examen ecocardiográfico

    Matemáticas aplicadas a las Ciencias Sociales II [En línea]

    Get PDF

    Assessment Method and Scale of Observation Influence Ecosystem Service Bundles

    Full text link
    [EN] The understanding of relationships between ecosystem services and the appropriate spatial scales for their analysis and characterization represent opportunities for sustainable land management. Bundles have appeared as an integrated method to assess and visualize consistent associations among multiple ecosystem services. Most of the bundle assessments focused on a static framework at a specific spatial scale. Here, we addressed the effects of applying two cluster analyses (static and dynamic) for assessing bundles of ecosystem services across four different scales of observation (two administrative boundaries and two sizes of grids) over 13 years (from 2000 to 2013). We used the ecosystem services matrix to model and map the potential supply of seven ecosystem services in a case study system in the central high-Andean Puna of Peru. We developed a sensitivity analysis to test the robustness of the matrix. The differences between the configuration, spatial patterns, and historical trajectories of bundles were measured and compared. We focused on two hypotheses: first, bundles of ecosystem services are mainly affected by the method applied for assessing them; second, these bundles are influenced by the scale of observation over time. For the first hypothesis, the results suggested that the selection of a method for assessing bundles have inferences on the interactions with land-use change. The diverse implications to management on ecosystem services support that static and dynamic assessments can be complementary to obtain better contributions for decision-making. For the second hypothesis, our study showed that municipality and grid-scales kept similar sensitivity in capturing the aspects of ecosystem service bundles. Then, in favorable research conditions, we recommend the combination of a municipal and a fine-grid scale to assure robustness and successfully land-use planning processes.Madrigal-Martínez, S.; Miralles García, JL. (2020). Assessment Method and Scale of Observation Influence Ecosystem Service Bundles. Land. 9(10):1-19. https://doi.org/10.3390/land9100392S119910Liu, J., Mooney, H., Hull, V., Davis, S. J., Gaskell, J., Hertel, T., … Li, S. (2015). Systems integration for global sustainability. Science, 347(6225). doi:10.1126/science.1258832Abson, D. J., von Wehrden, H., Baumgärtner, S., Fischer, J., Hanspach, J., Härdtle, W., … Walmsley, D. (2014). Ecosystem services as a boundary object for sustainability. Ecological Economics, 103, 29-37. doi:10.1016/j.ecolecon.2014.04.012Spellerberg, I., Vos, C. C., & Opdam, P. (1993). Landscape Ecology of a Stressed Environment. The Journal of Ecology, 81(3), 599. doi:10.2307/2261549Vihervaara, P., Rönkä, M., & Walls, M. (2010). Trends in Ecosystem Service Research: Early Steps and Current Drivers. AMBIO, 39(4), 314-324. doi:10.1007/s13280-010-0048-xLee, H., & Lautenbach, S. (2016). A quantitative review of relationships between ecosystem services. Ecological Indicators, 66, 340-351. doi:10.1016/j.ecolind.2016.02.004Mouchet, M. A., Lamarque, P., Martín-López, B., Crouzat, E., Gos, P., Byczek, C., & Lavorel, S. (2014). An interdisciplinary methodological guide for quantifying associations between ecosystem services. Global Environmental Change, 28, 298-308. doi:10.1016/j.gloenvcha.2014.07.012Cord, A. F., Bartkowski, B., Beckmann, M., Dittrich, A., Hermans-Neumann, K., Kaim, A., … Volk, M. (2017). Towards systematic analyses of ecosystem service trade-offs and synergies: Main concepts, methods and the road ahead. Ecosystem Services, 28, 264-272. doi:10.1016/j.ecoser.2017.07.012Howe, C., Suich, H., Vira, B., & Mace, G. M. (2014). Creating win-wins from trade-offs? Ecosystem services for human well-being: A meta-analysis of ecosystem service trade-offs and synergies in the real world. Global Environmental Change, 28, 263-275. doi:10.1016/j.gloenvcha.2014.07.005Deng, X., Li, Z., & Gibson, J. (2016). A review on trade-off analysis of ecosystem services for sustainable land-use management. Journal of Geographical Sciences, 26(7), 953-968. doi:10.1007/s11442-016-1309-9Renard, D., Rhemtulla, J. M., & Bennett, E. M. (2015). Historical dynamics in ecosystem service bundles. Proceedings of the National Academy of Sciences, 112(43), 13411-13416. doi:10.1073/pnas.1502565112Madrigal-Martínez, S., & Miralles i García, J. L. (2019). Land-change dynamics and ecosystem service trends across the central high-Andean Puna. Scientific Reports, 9(1). doi:10.1038/s41598-019-46205-9Stürck, J., Schulp, C. J. E., & Verburg, P. H. (2015). Spatio-temporal dynamics of regulating ecosystem services in Europe – The role of past and future land use change. Applied Geography, 63, 121-135. doi:10.1016/j.apgeog.2015.06.009Hou, Y., Lü, Y., Chen, W., & Fu, B. (2017). Temporal variation and spatial scale dependency of ecosystem service interactions: a case study on the central Loess Plateau of China. Landscape Ecology, 32(6), 1201-1217. doi:10.1007/s10980-017-0497-8Xu, S., Liu, Y., Wang, X., & Zhang, G. (2017). Scale effect on spatial patterns of ecosystem services and associations among them in semi-arid area: A case study in Ningxia Hui Autonomous Region, China. Science of The Total Environment, 598, 297-306. doi:10.1016/j.scitotenv.2017.04.009Raudsepp-Hearne, C., & Peterson, G. D. (2016). Scale and ecosystem services: how do observation, management, and analysis shift with scale—lessons from Québec. Ecology and Society, 21(3). doi:10.5751/es-08605-210316Rodríguez, L. C., Pascual, U., & Niemeyer, H. M. (2006). Local identification and valuation of ecosystem goods and services from Opuntia scrublands of Ayacucho, Peru. Ecological Economics, 57(1), 30-44. doi:10.1016/j.ecolecon.2005.03.022Bennett, E. M., Peterson, G. D., & Gordon, L. J. (2009). Understanding relationships among multiple ecosystem services. Ecology Letters, 12(12), 1394-1404. doi:10.1111/j.1461-0248.2009.01387.xRaudsepp-Hearne, C., Peterson, G. D., & Bennett, E. M. (2010). Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proceedings of the National Academy of Sciences, 107(11), 5242-5247. doi:10.1073/pnas.0907284107Tomscha, S. A., & Gergel, S. E. (2016). Ecosystem service trade-offs and synergies misunderstood without landscape history. Ecology and Society, 21(1). doi:10.5751/es-08345-210143Lavorel, S., Bayer, A., Bondeau, A., Lautenbach, S., Ruiz-Frau, A., Schulp, N., … Marba, N. (2017). Pathways to bridge the biophysical realism gap in ecosystem services mapping approaches. Ecological Indicators, 74, 241-260. doi:10.1016/j.ecolind.2016.11.015Li, T., Lü, Y., Fu, B., Hu, W., & Comber, A. J. (2019). Bundling ecosystem services for detecting their interactions driven by large-scale vegetation restoration: enhanced services while depressed synergies. Ecological Indicators, 99, 332-342. doi:10.1016/j.ecolind.2018.12.041Wei, H., Fan, W., Lu, N., Xu, Z., Liu, H., Chen, W., … Dong, X. (2019). Integrating Biophysical and Sociocultural Methods for Identifying the Relationships between Ecosystem Services and Land Use Change: Insights from an Oasis Area. Sustainability, 11(9), 2598. doi:10.3390/su11092598Hamann, M., Biggs, R., & Reyers, B. (2015). Mapping social–ecological systems: Identifying ‘green-loop’ and ‘red-loop’ dynamics based on characteristic bundles of ecosystem service use. Global Environmental Change, 34, 218-226. doi:10.1016/j.gloenvcha.2015.07.008Dou, H., Li, X., Li, S., & Dang, D. (2018). How to Detect Scale Effect of Ecosystem Services Supply? A Comprehensive Insight from Xilinhot in Inner Mongolia, China. Sustainability, 10(10), 3654. doi:10.3390/su10103654Cui, F., Tang, H., Zhang, Q., Wang, B., & Dai, L. (2019). Integrating ecosystem services supply and demand into optimized management at different scales: A case study in Hulunbuir, China. Ecosystem Services, 39, 100984. doi:10.1016/j.ecoser.2019.100984Qiao, X., Gu, Y., Zou, C., Xu, D., Wang, L., Ye, X., … Huang, X. (2019). Temporal variation and spatial scale dependency of the trade-offs and synergies among multiple ecosystem services in the Taihu Lake Basin of China. Science of The Total Environment, 651, 218-229. doi:10.1016/j.scitotenv.2018.09.135Roces-Díaz, J. V., Vayreda, J., Banqué-Casanovas, M., Díaz-Varela, E., Bonet, J. A., Brotons, L., … Martínez-Vilalta, J. (2018). The spatial level of analysis affects the patterns of forest ecosystem services supply and their relationships. Science of The Total Environment, 626, 1270-1283. doi:10.1016/j.scitotenv.2018.01.150Spake, R., Lasseur, R., Crouzat, E., Bullock, J. M., Lavorel, S., Parks, K. E., … Eigenbrod, F. (2017). Unpacking ecosystem service bundles: Towards predictive mapping of synergies and trade-offs between ecosystem services. Global Environmental Change, 47, 37-50. doi:10.1016/j.gloenvcha.2017.08.004Dade, M. C., Mitchell, M. G. E., McAlpine, C. A., & Rhodes, J. R. (2018). Assessing ecosystem service trade-offs and synergies: The need for a more mechanistic approach. Ambio, 48(10), 1116-1128. doi:10.1007/s13280-018-1127-7Saidi, N., & Spray, C. (2018). Ecosystem services bundles: challenges and opportunities for implementation and further research. Environmental Research Letters, 13(11), 113001. doi:10.1088/1748-9326/aae5e0Crouzat, E., Mouchet, M., Turkelboom, F., Byczek, C., Meersmans, J., Berger, F., … Lavorel, S. (2015). Assessing bundles of ecosystem services from regional to landscape scale: insights from the French Alps. Journal of Applied Ecology, 52(5), 1145-1155. doi:10.1111/1365-2664.12502Van der Biest, K., D’Hondt, R., Jacobs, S., Landuyt, D., Staes, J., Goethals, P., & Meire, P. (2014). EBI: An index for delivery of ecosystem service bundles. Ecological Indicators, 37, 252-265. doi:10.1016/j.ecolind.2013.04.006Egoh, B. N., Reyers, B., Rouget, M., & Richardson, D. M. (2011). Identifying priority areas for ecosystem service management in South African grasslands. Journal of Environmental Management, 92(6), 1642-1650. doi:10.1016/j.jenvman.2011.01.019Martín-López, B., Iniesta-Arandia, I., García-Llorente, M., Palomo, I., Casado-Arzuaga, I., Amo, D. G. D., … Montes, C. (2012). Uncovering Ecosystem Service Bundles through Social Preferences. PLoS ONE, 7(6), e38970. doi:10.1371/journal.pone.0038970Yang, G., Ge, Y., Xue, H., Yang, W., Shi, Y., Peng, C., … Chang, J. (2015). Using ecosystem service bundles to detect trade-offs and synergies across urban–rural complexes. Landscape and Urban Planning, 136, 110-121. doi:10.1016/j.landurbplan.2014.12.006Queiroz, C., Meacham, M., Richter, K., Norström, A. V., Andersson, E., Norberg, J., & Peterson, G. (2015). Mapping bundles of ecosystem services reveals distinct types of multifunctionality within a Swedish landscape. AMBIO, 44(S1), 89-101. doi:10.1007/s13280-014-0601-0Turner, K. G., Odgaard, M. V., Bøcher, P. K., Dalgaard, T., & Svenning, J.-C. (2014). Bundling ecosystem services in Denmark: Trade-offs and synergies in a cultural landscape. Landscape and Urban Planning, 125, 89-104. doi:10.1016/j.landurbplan.2014.02.007Kühne, O., & Duttmann, R. (2019). Recent Challenges of the Ecosystems Services Approach from an Interdisciplinary Point of View. Raumforschung und Raumordnung Spatial Research and Planning, 0(0). doi:10.2478/rara-2019-0055Birkhofer, K., Diehl, E., Andersson, J., Ekroos, J., Früh-Müller, A., Machnikowski, F., … Smith, H. G. (2015). Ecosystem services—current challenges and opportunities for ecological research. Frontiers in Ecology and Evolution, 2. doi:10.3389/fevo.2014.00087Rieb, J. T., Chaplin-Kramer, R., Daily, G. C., Armsworth, P. R., Böhning-Gaese, K., Bonn, A., … Bennett, E. M. (2017). When, Where, and How Nature Matters for Ecosystem Services: Challenges for the Next Generation of Ecosystem Service Models. BioScience, 67(9), 820-833. doi:10.1093/biosci/bix075Vallet, A., Locatelli, B., Levrel, H., Wunder, S., Seppelt, R., Scholes, R. J., & Oszwald, J. (2018). Relationships Between Ecosystem Services: Comparing Methods for Assessing Tradeoffs and Synergies. Ecological Economics, 150, 96-106. doi:10.1016/j.ecolecon.2018.04.002Zheng, Z., Fu, B., Hu, H., & Sun, G. (2014). A method to identify the variable ecosystem services relationship across time: a case study on Yanhe Basin, China. Landscape Ecology, 29(10), 1689-1696. doi:10.1007/s10980-014-0088-xMADRIGAL-MARTINEZ, S., & MIRALLES I GARCIA, J. L. (2019). UNDERSTANDING LAND USE CHANGES IN THE CENTRAL HIGH-ANDEAN MOIST PUNA. The Sustainable City XIII. doi:10.2495/sc190161Young, K. R. (2009). ANDEAN LAND USE AND BIODIVERSITY: HUMANIZED LANDSCAPES IN A TIME OF CHANGE. Annals of the Missouri Botanical Garden, 96(3), 492-507. doi:10.3417/2008035Jacobs, S., Burkhard, B., Van Daele, T., Staes, J., & Schneiders, A. (2015). ‘The Matrix Reloaded’: A review of expert knowledge use for mapping ecosystem services. Ecological Modelling, 295, 21-30. doi:10.1016/j.ecolmodel.2014.08.024Campagne, C. S., Roche, P., Müller, F., & Burkhard, B. (2020). Ten years of ecosystem services matrix: Review of a (r)evolution. One Ecosystem, 5. doi:10.3897/oneeco.5.e51103Burkhard, B., Kandziora, M., Hou, Y., & Müller, F. (2014). Ecosystem service potentials, flows and demands-concepts for spatial localisation, indication and quantification. Landscape Online, 34, 1-32. doi:10.3097/lo.201434Drescher, M., Perera, A. H., Johnson, C. J., Buse, L. J., Drew, C. A., & Burgman, M. A. (2013). Toward rigorous use of expert knowledge in ecological research. Ecosphere, 4(7), art83. doi:10.1890/es12-00415.1Roche, P. K., & Campagne, C. S. (2019). Are expert-based ecosystem services scores related to biophysical quantitative estimates? Ecological Indicators, 106, 105421. doi:10.1016/j.ecolind.2019.05.052INEI—National Institute of Statistics and Informatics National censushttps://www.inei.gob.pe/estadisticas/censos/Ryden, K. (1987). Environmental Systems Research Institute Mapping. The American Cartographer, 14(3), 261-263. doi:10.1559/152304087783875930Charrad, M., Ghazzali, N., Boiteau, V., & Niknafs, A. (2014). NbClust: AnRPackage for Determining the Relevant Number of Clusters in a Data Set. Journal of Statistical Software, 61(6). doi:10.18637/jss.v061.i06Hill, M. O. (1973). Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology, 54(2), 427-432. doi:10.2307/1934352Jost, L. (2006). Entropy and diversity. Oikos, 113(2), 363-375. doi:10.1111/j.2006.0030-1299.14714.xMetzger, M. J., Rounsevell, M. D. A., Van den Heiligenberg, H. A. R. M., Pérez-Soba, M., & Soto Hardiman, P. (2010). How Personal Judgment Influences Scenario Development: an Example for Future Rural Development in Europe. Ecology and Society, 15(2). doi:10.5751/es-03305-150205De Groot, R. S., Alkemade, R., Braat, L., Hein, L., & Willemen, L. (2010). Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecological Complexity, 7(3), 260-272. doi:10.1016/j.ecocom.2009.10.006Stürck, J., & Verburg, P. H. (2016). Multifunctionality at what scale? A landscape multifunctionality assessment for the European Union under conditions of land use change. Landscape Ecology, 32(3), 481-500. doi:10.1007/s10980-016-0459-6Zen, M., Candiago, S., Schirpke, U., Egarter Vigl, L., & Giupponi, C. (2019). Upscaling ecosystem service maps to administrative levels: beyond scale mismatches. Science of The Total Environment, 660, 1565-1575. doi:10.1016/j.scitotenv.2019.01.087Turner, M. G., O’Neill, R. V., Gardner, R. H., & Milne, B. T. (1989). Effects of changing spatial scale on the analysis of landscape pattern. Landscape Ecology, 3(3-4), 153-162. doi:10.1007/bf00131534Verhagen, W., Van Teeffelen, A. J. A., Baggio Compagnucci, A., Poggio, L., Gimona, A., & Verburg, P. H. (2016). Effects of landscape configuration on mapping ecosystem service capacity: a review of evidence and a case study in Scotland. Landscape Ecology, 31(7), 1457-1479. doi:10.1007/s10980-016-0345-2Scholes, R., Reyers, B., Biggs, R., Spierenburg, M., & Duriappah, A. (2013). Multi-scale and cross-scale assessments of social–ecological systems and their ecosystem services. Current Opinion in Environmental Sustainability, 5(1), 16-25. doi:10.1016/j.cosust.2013.01.004Felipe-Lucia, M. R., Comín, F. A., & Bennett, E. M. (2014). Interactions Among Ecosystem Services Across Land Uses in a Floodplain Agroecosystem. Ecology and Society, 19(1). doi:10.5751/es-06249-190120Trabucchi, M., Comín, F. A., & O’Farrell, P. J. (2013). Hierarchical priority setting for restoration in a watershed in NE Spain, based on assessments of soil erosion and ecosystem services. Regional Environmental Change, 13(4), 911-926. doi:10.1007/s10113-012-0392-4Pandeya, B., Buytaert, W., Zulkafli, Z., Karpouzoglou, T., Mao, F., & Hannah, D. M. (2016). A comparative analysis of ecosystem services valuation approaches for application at the local scale and in data scarce regions. Ecosystem Services, 22, 250-259. doi:10.1016/j.ecoser.2016.10.015Hein, L., van Koppen, C. S. A. (Kris), van Ierland, E. C., & Leidekker, J. (2016). Temporal scales, ecosystem dynamics, stakeholders and the valuation of ecosystems services. Ecosystem Services, 21, 109-119. doi:10.1016/j.ecoser.2016.07.008Hou, Y., Burkhard, B., & Müller, F. (2013). Uncertainties in landscape analysis and ecosystem service assessment. Journal of Environmental Management, 127, S117-S131. doi:10.1016/j.jenvman.2012.12.002Burkhard, B., Kroll, F., Müller, F., & Windhorst, W. (2009). Landscapes’ capacities to provide ecosystem services - A concept for land-cover based assessments. Landscape Online, 15, 1-22. doi:10.3097/lo.200915Bolliger, J., & Mladenoff, D. J. (2005). Quantifying spatial classification uncertainties of the historical Wisconsin landscape (USA). Ecography, 28(2), 141-156. doi:10.1111/j.0906-7590.2005.03955.

    Understanding land use changes in the central High-Andean moist Puna

    Full text link
    [EN] Mountain ecosystems around the world are facing rapid land-cover changes, which have received much attention among scientists, managers, and policy-makers. A growing scientific production has been possible by free and open access data and the use of remote sensing and geographic information system tools. In this context, our study quantified the land-use changes across 25 provinces in the central high-Andean moist Puna over the interval of 13 years, using a selection of eleven land-use/cover types included in the standardized nomenclature of the Corine Land Cover for Peru. Thereafter, we determine the importance of social-economic driving factors in two time periods, from 2000 to 2009 and 2009 to 2013. The results described three spatial patterns: (1) a North¿South division, (2) two different trends described by intensification/de-intensification agriculture, and (3) persistent forestland deterioration. Overall, our study reveals that agriculture in densely occupied provinces is the leading land-use change process negatively affecting pasture and forest extent. Moreover, understanding the spatial patterns of changes in the extent and their explanatory variables is important for clarifying land-use change trajectories. We hope our study will support spatial decision-making in complex mountain landscapes.Madrigal-Martínez, S.; Miralles García, JL. (2019). Understanding land use changes in the central High-Andean moist Puna. WIT Transactions on Ecology and the Environment (Online). 238:175-186. https://doi.org/10.2495/SC190161S17518623

    Presentación

    Get PDF
    Sin resume

    High temperature total consumption sample introduction system coupled to microwave plasma optical emission spectrometry (MIP-OES) for the analysis of aqueous samples

    Get PDF
    The high temperature torch integrated sample introduction system (hTISIS) is coupled to microwave plasma optical emission spectrometry (MIP-OES) for the first time. The goal of this work is to develop an accurate analysis of digested samples under continuous sample aspiration mode by coupling the hTISIS to a MIP-OES instrument. To achieve this, different operating conditions such as, nebulization flow rate, liquid flow rate and the spray chamber temperature were optimized in terms of sensitivity, limits of quantification (LOQs) and background equivalent concentration (BECs) for the determination of Ca, Cr, Cu Fe, K, Mg, Mn, Na, Pb and Zn, and these values were compared with those reported with a conventional sample introduction system. Under optimum conditions (0.8–1 L min−1, 100 μL min−1 and 400 ᵒC, respectively), the hTISIS improved MIP-OES analytical figures of merit and shortened 4-times wash out times with respect to a conventional cyclonic spray chamber, reporting an enhancement factor in the sensitivity among 2–47 times and LOQs from 0.9 to 360 μg kg−1. Once the best operating conditions were set, the magnitude of the interference caused by 15 different acid matrices (2, 5 and 10% w/w of HNO3, H2SO4, HCl and mixtures of HNO3 with H2SO4 and HNO3 with HCl) was significantly lower for the former device. Finally, 6 different digested oily samples (used cooking oil, animal fat, corn oil and the same samples after a filtration step) were analyzed by means of an external calibration approach based on the use of multielemental standards prepared in 3% (w/w) HCl solution. The obtained results were compared against those supplied by a conventional methodology employing an inductively coupled plasma optical emission spectrometry, ICP-OES, instrument. It was clearly concluded that the hTISIS coupled to MIP-OES afforded similar concentrations as compared to the conventional methodology

    How to achieve full liquid conditions at the capillary tube inlet of a household refrigerator

    Full text link
    [EN] The capillary tube with a liquid-to-suction heat exchanger (CT-LSHX) is a component that is widely used in household refrigerators. Recent works have indicated that even when measuring subcooled conditions at the condenser outlet, the condition at the capillary tube inlet is a two-phase flow. The present work was dedicated to analyzing the actual refrigerant conditions at the capillary tube inlet and to investigating how full liquid conditions could be achieved. The research was performed using a typical household refrigerator with corresponding fresh food and freezer compartments, replacing the original refrigerant-to-air condenser with a refrigerant-to-water condenser. This allowed, first, the condensation conditions to be controlled and, second, the estimation of the refrigerant conditions at the condenser outlet from the heat exchanger balance. The obtained results indicated the presence of a non-equilibrium two-phase flow, composed of subcooled vapor and subcooled liquid, at the capillary tube inlet, with both liquid and vapor entering the capillary tube as a vortex with small, fast fluctuations of the liquid level. This non-equilibrium indicated that the subcooling, evaluated from the pressure and temperature of the refrigerant at the condenser outlet, was only apparent and did not allow the evaluation of the actual enthalpy. Finally, by using a smaller capillary tube diameter and increasing the compressor speed, full liquid conditions at the capillary tube inlet were achieved. Furthermore, a performance comparison between the original and the new design revealed that the COP was higher with full liquid conditions.In this project, the work of Laetitia Bardoulet was partially supported by the Santiago Grisolia 2015 program, which is funded by the Generalitat Valenciana, with the reference number GRISOLIA/2015/021.Bardoulet, L.; Corberán, JM.; Santiago Martínez-Ballester (2019). How to achieve full liquid conditions at the capillary tube inlet of a household refrigerator. International Journal of Refrigeration. 100:265-273. https://doi.org/10.1016/j.ijrefrig.2019.02.006S26527310

    Development of an experimental method to generate a non-uniform air flow distribution at the inlet of a heat exchanger

    Get PDF
    As already demonstrated by many authors, the non-uniformity of the air distribution at the inlet of both condensers and evaporators entails not negligible performance degradation. Its experimental quantification is mainly complicated by the difficulties connected to the air velocity measurement in a traditional air-conditioning installation. For this reason, many works are supported by the application of CFD models or others simulation tools. In order to analyze experimentally the effect of the nonuniform air distribution on the performance of a condenser, in this work a simple method for generating a specific air velocity profile at the inlet of a heat exchanger will be presented. It consist in allocating several filters along the heat exchanger height. Once characterized the filter, identifying the relation between the length of the filters, the pressure drop and the air velocity, any type of air velocity profile can be generated. The method presents high flexibility and allows being used with any typology of heat exchanger. In this work, the method will be used for generating a non-uniform air velocity profile at the inlet of two condenser: a round tube plate fins heat exchanger and a microchannel heat exchanger. The results show that, with a specific distribution of the filters, the nonuniform air velocity profile characterizing the A-shape condensation units has been reproduced with a very good agreement.The work of Alessandro Pisano on this project was partially supported by the Ministry for Economy and Finance of Spain, under the Training of Researcher program (FPI). Financial support from the Ministry for Economy and Finance of Spain, project numbers: DPI2011-26771-C02-01 is gratefully acknowledged
    corecore