65 research outputs found

    Study of the secretome of leishmania involved in the infection

    Get PDF
    Les parasites protozoaires du genre Leishmania sont les agents microbiens responsables d’un groupe de maladies connues sous le nom de leishmanioses. L’infection productive dépend de la capacité de survie du parasite suite au premier contact initial du système immunitaire de l’hôte. Par conséquent, la prolifération du parasite à l’intérieur des phagolysosomes sera responsable de la pathologie. Les promastigotes stationnaires, récupérés en culture axénique de laboratoire sont semblables aux promastigotes métacycliques. Ces derniers sont fortement immunomodulateurs et sont considérés, traditionnellement comme la forme la plus infectieuse du parasite. Les protéines sécrétées de différents organismes ont été directement impliquées dans plusieurs pathologies. Donc, il est possible que les protéines sécrétées par Leishmania, soient également impliquées dans la capacité du parasite à subvertir le système immunitaire. Les avancées récentes dans l’étude du sécrétome de plusieurs types de Leishmania ont permis d’affirmer que le sécrétome est fort complexe. Nous avons déterminé qu’environ 300 protéines sont sécrétées par le parasite, la plupart d’entre elles ayant aucun signal canonique de sécrétion. Le sécrétome de Leishmania est donc composé surtout de protéines qui sont libérées par sécrétion non conventionnelle, . Afin d’étudier le sécrétome associé à la virulence, nous avons développé et validé une approche qui a permis l’étude des composants de l’exoprotéome des parasites stationnaires et logarithmiques. Cette approche était basée sur la culture continue des parasites dans un milieu de culture sans supplément de sérum de bovin fœtal, cRPMI, dans lequel la virulence des parasites est maintenue. Grâce à cette approche nous avons mis en évidence un exoproteome distinct de ceux jusqu’à date répertorié. La méthode de production et de la récupération de l’exoproteome sont donc très importants. Notre exoprotéome est dominé par la GP63, une glycoprotéine dont l’importance centrale dans l’infection a été déjà validée. La culture continue des parasites est donc essentiel pour avoir un exoprotéome représentatif. Nous avons également déterminé que la cultutre en continu pouvait amener à une diminution de la virulence et quarante divisions sont nécessaires pour une perte de virulence significative. Par conséquent toutes nos études se sont fait chez des parasites comptant moins de 20 divisions. Le principal mécanisme associé à la perte de virulence a été identifié comme une incapacité de se différencier en amastigotes. Le cRPMI a donc permis la culture des parasites pour l’étude de l’exoprotéome tout en maintenant la virulence des parasites. La présence de vésicules, décrite déjà comme un composant de l’ exoprotéome, a été confirmée aussi par notre approche continue et a été confirmé, d’ailleurs, dans l’exoproteome des parasites en phase de croissance logarithmique. Les vésicules récupérées des parasites logarithmiques diffèrent de celles recueillies de parasites en phase stationnaire de croissance. En effet des protéines potentiellement impliquées dans la rénovation et le recyclage du contenu protéique, tels certains composants du ribosome étaient enrichies dans les parasites en phase logarithmique tandis que les vésicules des parasites stationnaires ont un contenu protéomique ayant des caractéristiques similaires aux corps apoptotiques des cellules de mammifères. En dehors de la GP63, plusieurs autres protéines décrites comme immunomodulatrices ont été retrouvées dans l’exoprotéome des parasites stationnaires, ce qui indique que celui-ci contient un ensemble de protéines avec un potentiel d’interaction directe avec les cellules du système immunitaire. Immunologiquement, l’exoprotéome récupéré des parasites stationnaires a été capable d’activer les cellules dendritiques, laissant supposer une fonction importante dans la création d’un environnement inflammatoire précoce lors des premières étapes de l’infection. En conclusion, la recherche développée a contribué à l’avancement des connaissances actuelles sur la biologie du Leishmania, grâce au développement et à la validation d’une nouvelle approche afin d’étudier son exoprotéome. L’exoprotéome récupéré était dynamique, il avait une composition spécifique, dépendant du stade du parasite. Cet exoprotéome avait des effets spécifiques sur les cellules dendritiques et il jouait un rôle important dans les étapes précoces de l’infection. Cette étude a ouvert des nouvelles perspectives sur l’exoprotéome de Leishmania spp. permettant la découverte de nouvelles protéines immunomodulatrices et, en corrolaire, de nouvelles cibles pour le contrôle de la maladie associée au parasite.Protozoa parasites of the genus Leishmania are the responsible for a group of diseases known as leishmaniasis. The infection is associated with the capacity of these parasites to survive in the phagolysosomes of infected macrophages. Successful infections with pathogenic Leishmania spp. are linked to the capacity of the parasite to survive the initial impact of the host immune system and to interfere with the infected cells rendering them incapable of eliminating the parasites. The secreted proteins from the parasite are expected to be in the front line for interactions with the host. Recent advances in the study of the secretome of Leishmania spp. depicted it as highly complex with the majority of proteins without any predictable secretion signal. The secretome is composed of proteins that are released by different mechanisms like conventional and unconventional secretion. Several proteins secreted by Leishmania spp. are known to interact and influence the outcome of the disease by directly interfering with the host immune cells. The proteomic studies on the Leishmania spp. secretome identified more than three hundred proteins released into the exterior. The stationary promastigotes recovered in axenic culture were enriched in the most virulent promastigote form, the metacyclic parasites. Therefore we aimed at evaluating the exoproteome associated with the stationary parasites. To achieve this we developed and validated an approach that would enable the study of the exoproteome components of stationary and logarithmic parasites. This approach was based on the continuous cultivation of the parasites in a medium without any protein supplementation that maintained the basic virulence of the parasites. The continuous approach produced a GP63-rich exoproteome that was distinct from the traditional approaches indicating that the process of recovery induced a significant bias in the study. Furthermore as the continuous approach was chosen, we determined the mechanisms associated with loss of virulence assuring that fully virulent parasites were used. At least forty parasite divisions were required for a short-term loss of virulence. The main mechanism associated with loss of virulence was identified as a growing incapacity to differentiate into amastigotes. The defined time interval of forty divisions enabled us to evaluate the exoproteome without loss of virulence related to the subculture. The protein-free medium developed, cRPMI, retained parasite virulence and morphology similar to that of parasites grown in standard media. The exoproteomes recovered using cRPMI were dominated by proteins without any recognizable secretion sequence, in concordance with reports on other Leishmania spp. The presence of vesicles, already reported as a component of the exoproteome, was also confirmed using our continuous approach. Furthermore, the presence of vesicles in the logarithmic parasites exoproteome was confirmed. The protein content of these vesicles presented a dynamic profile that was dependent on the parasite stage. The vesicles recovered from logarithmic parasites seemed to be related to protein turnover, being significantly enriched in ribosomal components. The vesicles from stationary parasites are of different composition, presenting some characteristics similar to apoptotic bodies. Immunologically the exoproteome recovered from stationary parasites was able to activate dendritic cells suggesting that the exoproteome might have a function in the creation of an early inflammatory environment leading to the recruitment of neutrophils and monocytes that might function as safe heavens for the parasites. In conclusion, our research has contributed to the advance of the current knowledge of Leishmania biology, through the development and validation of a novel approach to study the Leishmania secretome. The exoproteome recovered from stationary parasites had specific immune-modulating effects on bone marrow derived dendritic cells, indicating that it can play an important role in the precocious steps of infection. This study opened new perspectives into the Leishmania spp. exoproteome that will enable the search of new immunomodulatory proteins that might become the future targets to leishmaniasis control

    Captação de ferro por amastigotas de Leishmania infantum

    Get PDF
    Mestrado em Microbiologia MolecularO ferro é um elemento essencial para quase todos os organismos, a Leishmania não é excepção. Pouco é conhecido sobre o metabolismo do ferro em Leishmania, especialmente no seu estadío intracelular, o amastigota. Por isso foram estudadas quais as fontes de ferro utilizáveis pela forma amastigota. Usando um meio pobre em ferro foi demonstrado que amastigotas axénicos de Leishmania infantum são capazes de adquirir ferro proveniente de diferentes fontes como a hemoglobina, a hemina, ferro associado a quelantes de baixo peso molecular e ferro iónico. Pelo contrário a ferritina, a lactoferrina e a transferrina não permitiram o crescimento parasitário. Foi também iniciado o estudo dos mecanismos de captação de ferro associados ás diferentes fontes utilizáveis. Resultados preliminares sugerem a aquisição de ferro a partir da hemina e da hemoglobina mediante receptores específicos ou então, no caso do ferro iónico e do ferro associado a nitrilotioacetato, mediante a acção de reductases ABSTRACT: Iron is an essential element for all living systems. Leishmania is no exception. Litle is known about iron metabolism in Leishmania, especially in the mammalian stage (the amastigote). For this reason we have started looking at the process of iron aquisition in amastigotes. Using an iron poor media we demonstrated that Leishmania infantum axenic amastigotes are able to acquire iron from different iron sources like haemogoblin, hemin and elemental iron either in the form of Fe2+ or Fe3+. This suggests a significant flexibility in the acquisition of this metal. In our assays neither ferritin, lactoferrin or transferrin induced significant growth. At present we are dissecting the mechanism of iron internalization from hemin and haemoglobin. Preliminary results suggest the uptake through specific receptors. Concerning ionic iron or iron associated with NTA our studies seam to indicate iron uptake through a reductase system

    Serological and Molecular Survey of Leishmania infantum in a Population of Iberian Lynxes (Lynx pardinus)

    Get PDF
    This article belongs to the Special Issue Advances in Leishmania Research: From Basic Parasite Biology to Disease Control.Leishmania infantum, the sand fly-transmitted protozoan parasite responsible for leishmaniasis in humans, dogs, and cats, is endemic in the Iberian Peninsula. However, the impact of L. infantum infection on the conservation of the endangered Iberian lynx (Lynx pardinus) is unknown. Herein, we describe for the first time the occurrence of L. infantum infection among a population of reintroduced and wild-born L. pardinus living in the Portuguese Guadiana Valley Park. The presence of infection was addressed by molecular detection of Leishmania kinetoplast DNA (kDNA) in 35 lynxes, with further confirmation of L. infantum species performed by an internally transcribed spacer (ITS)-1 sequencing. Eight blood samples were positive for kDNA, and ITS-1 sequencing confirmed the presence of L. infantum in two of those samples. Exposure to Leishmania was screened in a group of 36 lynxes using an immunofluorescence antibody test (IFAT) and a multi-antigen enzyme-linked immunosorbent assay (ELISA), using SPLA, rK39, and CPX as Leishmania-specific antigens. Four animals presented a positive IFAT at a dilution of 1:40. Eight samples were considered seropositive to all ELISA Leishmania-specific antigens. Agreement between PCR, IFAT, and all ELISA antigens was found for 1 in 27 samples. These results highlight the susceptibility of autochthonous L. pardinus to L. infantum infection. Further investigation is required to assess the impact of L. infantum infection on this wild species conservation.This research was funded by the Parasite Disease Group at i3S, Porto, Portugal, and the Portuguese Foundation for Science and Technology (FCT) under the PhD scholarship number 2020.07306.BD and the project PTDC/CVT-CVT/6798/2020.info:eu-repo/semantics/publishedVersio

    Immune Response Regulation by Leishmania Secreted and Nonsecreted Antigens

    Get PDF
    Leishmania infection consists in two sequential events, the host cell colonization followed by the proliferation/dissemination of the parasite. In this review, we discuss the importance of two distinct sets of molecules, the secreted and/or surface and the nonsecreted antigens. The importance of the immune response against secreted and surface antigens is noted in the establishment of the infection and we dissect the contribution of the nonsecreted antigens in the immunopathology associated with leishmaniasis, showing the importance of these panantigens during the course of the infection. As a further example of proteins belonging to these two different groups, we include several laboratorial observations on Leishmania Sir2 and LicTXNPx as excreted/secreted proteins and LmS3arp and LimTXNPx as nonsecreted/panantigens. The role of these two groups of antigens in the immune response observed during the infection is discussed

    Recursos laborais, engagement e desempenho dos trabalhadores: Um estudo numa empresa da área da grande distribuição

    Get PDF
    The change in company management’s paradigm to a greater concern for its human capital has allowed the raising of new ways for facing organisational success. Based on that assumption, the present study intends to analyse the relations between work engagement and job resources and their implications in workers’ performance. For that, we reckoned on the participation of 101 workers from a multinational retail company in the field of household equipment that had taken the surveys and annexed to them the results from their formal performance appraisals. The obtained results represent a reinforcement to the importance of job resources in the emergence of engagement at the workplace and make us ponder on the appropriateness of formal performance appraisal systems. The implications of this study are then discussed in light of its relevance to human resources management.A mudança no paradigma da gestão das empresas para uma maior preocupação com o seu capital humano tem permitido o surgimento de novas formas de encarar o sucesso organizacional. É ao ter por base esse pressuposto que o presente estudo pretende analisar as relações entre o engagement no trabalho e os recursos laborais e as implicações que os mesmos têm para o desempenho dos trabalhadores. Para isso, contámos com a participação de 101 trabalhadores duma empresa multinacional da área da grande distribuição de equipamentos para o lar, que preencheram os questionários e anexaram aos mesmos os resultados das suas avaliações de desempenho formais. Os resultados obtidos reforçam a importância dos recursos laborais no surgimento do engagement no local de trabalho e levam-nos a reflectir sobre a adequabilidade dos sistemas formais de avaliação do desempenho. As implicações deste estudo são discutidas à luz da sua relevância para a gestão de recursos humanos

    The Use of Specific Serological Biomarkers to Detect CaniLeish Vaccination in Dogs

    Get PDF
    Canine leishmaniosis (CanL) prevention in the Mediterranean basin is considered essential to stop human zoonotic visceral leishmaniasis. In this context, vaccination of dogs is expected to have a significant impact in disease control. CaniLeish® (Virbac Animal Health) is one of a few CanL vaccines that are at this moment licensed in Europe. This vaccine contains purified excreted-secreted proteins of Leishmania having several antigens/immunogens with potential to influence serological response. Therefore, it is important to know if CaniLeish vaccination increased the diagnostic challenges associated with conventional serology, limiting the value of some antigens. To address this 20 dogs from a cohort of 35 healthy dogs that were vaccinated, maintained indoor for 1 month and then returned to their natural domiciles for 2 years. After this period, they were re-called to evaluate their clinical/parasitological condition and assess the evolution of seroreactivity against different antigens: soluble promastigote Leishmania antigens (SPLA), recombinant protein Leishmania infantum cytosolic peroxiredoxin, recombinant protein K39 (rK39), recombinant protein K28 and recombinant kinesin degenerated derived repeat using ELISA. Two years after vaccination all vaccinated non-infected animals were seropositive for SPLA. For the other antigens the serological profile was indistinguishable from non-infected animals. Moreover, vaccinated animals presented a characteristic relative serological profile, with higher normalized serological response to SPLA than rK39. This fact enabled to distinguish with sensitivity 92.3% and specificity 95.4%, vaccinated non-infected dogs from infected and non-infected dogs. Ultimately, relative serological profile enabled the detection of healthy vaccinated animals enabling more accurate serological surveys.This work was financed by: FEDER—Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalization (POCI), Portugal 2020, and by Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project Institute for Research and Innovation in Health Sciences (POCI-01-0145-FEDER-007274) and project NORTE-01-0145-FEDER-000012, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). EC was supported by a research contract funded via the VII PN I+D+I 2013-2016 programme and FEDER Funds (RICET RD12/0018/0003)S

    Synthesis and biological evaluation of Amphotericin B formulations based on organic salts and ionic liquids against Leishmania infantum

    Get PDF
    Nowadays, organic salts and ionic liquids (OSILs) containing active pharmaceutical ingredients (APIs) are being explored as drug delivery systems in modern therapies (OSILs-API). In that sense, this work is focused on the development of novel OSILs-API based on amphotericin B through an innovative procedure and the evaluation of the respective biological activity against Leishmania infantum. Several ammonium, methylimidazolium, pyridinium and phosphonium organic cations combined with amphotericin B as anion were synthesized in moderate to high yields and high purities by the water-reduced buffer neutralization method. All prepared compounds were characterized to confirm the desired chemical structure and the specific optical rotation ([α]D25) was also determined. The biological assays performed on L. infantum promastigotes showed increased activity against this parasitic disease when compared with the starting chloride forms and amphotericin B alone, highlighting [P6,6,6,14][AmB] as the most promising formulation. Possible synergism in the antiprotozoal activity was also evaluated for [P6,6,6,14][AmB], since it was proven to be the compound with the highest toxicity. This work reported a simple synthetic method, which can be applied to prepare other organic salts based on molecules containing fragile chemical groups, demonstrating the potential of these OSILs-AmB as possible agents against leishmaniasis.info:eu-repo/semantics/publishedVersio

    Synthesis and Biological Evaluation of Amphotericin B Formulations Based on Organic Salts and Ionic Liquids against Leishmania infantum

    Get PDF
    Funding text This research was funded by the project NORTE-01-0145-FEDER-000012, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). This work was also supported by the Associate Laboratory for Green Chemistry LAQV financed by national funds from FCT/MCTES (UIDB/50006/2020, UIDP/50006/2020 and LA/P/0008/2020). The authors also thank Fundação para a Ciência e Tecnologia for the projects PTDC/EAM-AMB/2023/2021, PTDC/QUI-QOR/32406/2017 and PTDC/BTM-SAL/29786/2017. N.S. was supported by PTDC/SAU-PAR/31013/2017. A.F.M.S and Ž.P. also acknowledge FCT-MCTES for the PhD Grant (SFRH/BD/132551/2017) and for the Norma Transitória DL 57/2016 Program contract, respectively. The NMR spectrometers are part of The National NMR Facility, supported by FCT (ROTEIRO/0031/2013 - PINFRA/22161/2016) (co-financed by FEDER through COMPETE 2020, POCI, and PORL and FCT through PIDDAC).Nowadays, organic salts and ionic liquids (OSILs) containing active pharmaceutical ingredients (APIs) are being explored as drug delivery systems in modern therapies (OSILs-API). In that sense, this work is focused on the development of novel OSILs-API based on amphotericin B through an innovative procedure and the evaluation of the respective biological activity against Leishmania infantum. Several ammonium, methylimidazolium, pyridinium and phosphonium organic cations combined with amphotericin B as anion were synthesized in moderate to high yields and high purities by the water-reduced buffer neutralization method. All prepared compounds were characterized to confirm the desired chemical structure and the specific optical rotation ([α]D25) was also determined. The biological assays performed on L. infantum promastigotes showed increased activity against this parasitic disease when compared with the starting chloride forms and amphotericin B alone, highlighting [P6,6,6,14][AmB] as the most promising formulation. Possible synergism in the antiprotozoal activity was also evaluated for [P6,6,6,14][AmB], since it was proven to be the compound with the highest toxicity. This work reported a simple synthetic method, which can be applied to prepare other organic salts based on molecules containing fragile chemical groups, demonstrating the potential of these OSILs-AmB as possible agents against leishmaniasis.publishersversionpublishe

    More than just exosomes: distinct Leishmania infantum extracellular products potentiate the establishment of infection

    Get PDF
    The use of secretion pathways for effector molecule delivery by microorganisms is a trademark of pathogenesis. Leishmania extracellular vesicles (EVs) were shown to have significant immunomodulatory potential. Still, they will act in conjunction with other released parasite-derived products that might modify the EVs effects. Notwithstanding, the immunomodulatory properties of these non-vesicular components and their influence in the infectious process remains unknown. To address this, we explored both in vitro and in vivo the immunomodulatory potential of promastigotes extracellular material (EXO), obtained as a whole or separated in two different fractions: EVs or vesicle depleted EXO (VDE). Using an air pouch model, we observed that EVs and VDE induced a dose-dependent cell recruitment profile different from the one obtained with parasites, attracting significantly fewer neutrophils and more dendritic cells (DCs). Additionally, when we co-inoculated parasites with extracellular products a drop in cell recruitment was observed. Moreover, in vitro, while VDE (but not EVs) downregulated the expression of DCs and macrophages activation markers, both products were able to diminish the responsiveness of these cells to LPS. Finally, the presence of Leishmania infantum extracellular products in the inoculum promoted a dose-dependent infection potentiation in vivo, highlighting their relevance for the infectious process. In conclusion, our data demonstrate that EVs are not the only relevant players among the parasite exogenous products. This, together with the dose-dependency observed, opens new avenues to the comprehension of Leishmania infectious process. The approach presented here should be exploited to revisit existing data and considered for future studies in other infection models.NORTE-01-0145-FEDER-000012, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). This work was also funded by FEDER through the Operational Competitiveness Programme – COMPETE and by National Funds through FCT – Fundação para a Ciência e a Tecnologia under the project FCOMP-01-0124-FEDER-019648 (PTDC/BIA-MIC/118644/2010). PC was supported by Foundation for Science and Technology (FCT), Portugal, through the individual grant SFRH/BD/121252/2016info:eu-repo/semantics/publishedVersio

    Indole-Containing Pyrazino[2,1-b]quinazoline-3,6-diones Active against Plasmodium and Trypanosomatids

    Get PDF
    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsmedchemlett.1c00589.Malaria, leishmaniasis, and sleeping sickness are potentially fatal diseases that represent a real health risk for more than 3,5 billion people. New antiparasitic compounds are urgent leading to a constant search for novel scaffolds. Herein, pyrazino[2,1-b]quinazoline-3,6-diones containing indole alkaloids were explored for their antiparasitic potential against Plasmodium falciparum, Trypanosoma brucei, and Leishmania infantum. The synthetic libraries furnished promising hit compounds that are species specific (7, 12) or with broad antiparasitic activity (8). Structure-activity relationships were more evident for Plasmodium with anti-isomers (1S,4R) possessing excellent antimalarial activity, while the presence of a substituent on the anthranilic acid moiety had a negative effect on the activity. Hit compounds against malaria did not inhibit β-hematin, and in silico studies predicted these molecules as possible inhibitors for prolyl-tRNA synthetase both from Plasmodium and Leishmania. These results disclosed a potential new chemotype for further optimization toward novel and affordable antiparasitic drugs.publishersversionpublishe
    • …
    corecore