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Abstract: Nowadays, organic salts and ionic liquids (OSILs) containing active pharmaceutical in-
gredients (APIs) are being explored as drug delivery systems in modern therapies (OSILs-API). In
that sense, this work is focused on the development of novel OSILs-API based on amphotericin B
through an innovative procedure and the evaluation of the respective biological activity against
Leishmania infantum. Several ammonium, methylimidazolium, pyridinium and phosphonium organic
cations combined with amphotericin B as anion were synthesized in moderate to high yields and
high purities by the water-reduced buffer neutralization method. All prepared compounds were char-
acterized to confirm the desired chemical structure and the specific optical rotation ([α]D

25) was also
determined. The biological assays performed on L. infantum promastigotes showed increased activity
against this parasitic disease when compared with the starting chloride forms and amphotericin B
alone, highlighting [P6,6,6,14][AmB] as the most promising formulation. Possible synergism in the
antiprotozoal activity was also evaluated for [P6,6,6,14][AmB], since it was proven to be the compound
with the highest toxicity. This work reported a simple synthetic method, which can be applied to
prepare other organic salts based on molecules containing fragile chemical groups, demonstrating
the potential of these OSILs-AmB as possible agents against leishmaniasis.

Keywords: organic salts and ionic liquids; amphotericin B; active pharmaceutical ingredients;
Leishmania infantum; leishmaniasis

1. Introduction

Amphotericin B (AmBH, Figure 1) is an antibiotic highly used against fungal infec-
tions [1,2] first introduced in 1958 and has been dominating the market over the years [3–5].
AmBH is a yellow solid product that can be found in both neutral and zwitterionic forms,
possessing a polar and apolar side of the lactone ring, polyene chain and ionizable carboxyl
and amine groups, which provide amphoteric properties to the molecule [6–8]. These
physicochemical properties are the reason why AmBH is poorly soluble in aqueous media,
as well as several organic solvents [6], leading, in some cases, to self-aggregation [8]. Since
this pharmaceutical drug is insoluble in water, there are only two possible ways for drug
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administration: (i) through the addition of sodium desoxycholate to form a colloidal dis-
persion for intravenous infusion (Fungizone®) [1,9,10] and (ii) by single bilayer liposomal
drug delivery system (Ambisome®) [1,11]. Nevertheless, both approaches present some
drawbacks, such as nephrotoxicity [1,12] for the former and more frequent administrations
are required for the latter, although this last approach allows a larger dose tolerance with
reduced side effects.
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AmBH is a low-soluble polyene antifungal, belonging to the mycosamine family,
which includes nystatin, candicidin and rimodicin [13,14]. At an industrial scale, this drug
is extracted from Streptomyces nodosus [6,8]. The total synthesis of AmBH was described in
1988 by Nicolaou et al. [15]. Nonetheless, biotechnological production is still a much cheaper
and more efficient process. In addition, due to the intrinsic lack of stability associated
with the presence of the labile hemiacetal group, chemically transforming AmBH in high
yields (70% to quantitative) is quite challenging. This is only possible when using very
reactive chemical reagents on amino and carboxylate groups or by first protecting these
chemical groups to perform further modifications elsewhere [16–21]. Both approaches
are experimentally laborious to execute and may lead to complications. Moreover, many
reported cases do not even reach reaction yields above 60% [22], some being as low as
10% [23–25].

Organic salts and ionic liquids containing active pharmaceutical ingredients (OSILs-
API) have emerged as a greener alternative to overcome problems in the pharmaceutical
industry [26–30]. Moreover, it is also known that ionic liquids can provide a supplementary
function to the active pharmaceutical ingredient (API) [31–33] and act as promising solvents,
cosolvents and/or reagents to develop new APIs [33–35], being classified as the third
generation of ionic liquids. In this approach, it is possible to take advantage of cation/anion
fine-tuning to design compounds with improved physicochemical properties. Therefore,
combining counterions with active pharmaceutical ingredients [36–38] can be relevant for
solving solubility, membrane permeability and polymorphism, among other issues [39–45].
In this context, McCrary [46], Jameson [47] and their collaborators demonstrated that ionic
liquid can be designed to modulate the hydro- and lipophilicity of AmBH, allowing this
drug to surpass its solubility and aggregation problems.

Leishmaniasis is the generic term for protozoan parasitic diseases caused by several
Leishmania spp., endemic in 98 countries and is of great public health concern, infecting
approximately two million patients per year [48,49]. This disease is present in all areas
favorable to the development of its vector, the sandfly. After biting their host, Leishmania
promastigotes, the parasite’s flagellate stage, are transmitted and eventually mature into
the amastigote stage in phagocytic cells, which are the target cells of this vector [48]. One of
the most severe cases of this disease is visceral leishmaniasis (VL), being fatal without ade-
quate treatment [50]. Since no vaccine was available for more than 70 years, the relatively
inexpensive pentavalent antimonials were used as the first line of defense. For a long time,
AmBH was considered a second-line treatment against VL, even though inherent problems
related to its toxicity were always an issue. However, liposomal formulations emerged as a
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new approach to be used in a monotherapy regime, being also recommended by FDA and
WHO [51,52]. AmBH has high affinity to ergosterol (membrane-bound sterol of fungi and
protozoa) [53] and promotes the formation of small pores in the membrane of these microor-
ganisms that modifies the permeability to cations, water and glucose [53,54] and disrupt
the cell osmotic integrity, causing cell death [53,55]. Nevertheless, new methods to cure this
disease have been proposed, including host-directed and combinational therapies, drug
repurposing and nanotechnology. In addition, ionic liquids, other solvents and nanoparti-
cles [18,19,56] have also played a role in what concerns the increase in drug solubilization
and the improvement of formulations and delivery [17,57]. Thus, the search for organic
salts or ionic liquids as a novel method for easy transformation of amphotericin B in high
yields without additional protection/deprotection steps seems desirable to investigate.

Herein, we present a novel and innovative strategy to synthesize organic salts based on
amphotericin B with different cations of ammonium, methylimidazolium, pyridinium and phos-
phonium type, namely [Aliquat][AmB], [Ch][AmB], [C2OHMIM][AmB], [C3OMIM][AmB],
[C16Pyr][AmB] and [P6,6,6,14][AmB]. Moreover, the biological properties of these new com-
pounds were evaluated against Leishmania infantum, aiming to understand their potential
as a therapeutically antiprotozoal drug. In this context, to quantify the improvement in
activity, the relative decrease in inhibitory concentration (RDIC) [27,58] was determined,
being particularly relevant in the case of antibiotics [59,60]. This parameter can separate
OSILs-API into two classes: (i) enhancer, when the activity increases up to one order of
magnitude (~10-fold) and (ii) potentiator, if the activity increases two (~100-fold) or three
(~1000-fold) orders of magnitude.

2. Materials and Methods
2.1. Synthesis and Chemical Characterization of OSILs Based on Amphotericin B

Chemical reagents and solvents were acquired from Aldrich, BDH, Solchemar and Va-
lente & Ribeiro, being utilized without further purification, while the basic anion-exchange
resin Amberlite IRA-400 (OH−) (ion-exchange capacity: 1.4 mEq mL−1) was supplied by
Supelco. Regarding chemical characterization, 1H-NMR spectra were recorded on a Bruker
AMX400 spectrometer at room temperature, using (CD3)2SO (from EurisoTop) as a deuter-
ated solvent, and the chemical shifts were reported downfield in parts per million (ppm).
FTIR spectra were measured on a Perkin Elmer 683. MALDI-TOF mass spectrometry was
carried out on a Voyager-DE™ PRO Workstation model without matrix and with 3-HPA in
both positive and negative ion modes.

In this work, neutral/zwitterionic AmBH was deprotonated with Et3N and coupled
as an anion to form OSILs-AmB with different ammonium, methylimidazolium, pyri-
dinium and phosphonium organic cations. All compounds were prepared according to the
following general procedure: (i) the selected organic cations were first transformed into
hydroxides through Amberlite IRA-400 (OH−), an ionic exchange column, in methanol,
as described in a previous publication [61]; (ii) the prepared hydroxides were then neu-
tralized with the amphotericin B dissolved in 1 M dry triethylamine buffer methanolic
solution and left to stir for 1 h at room temperature, whose method was adapted from
Ferraz et al. [62]; (iii) aiming to purify the desired product, the solution was evaporated, re-
dissolved in methanol, filtered through a calcium carbonate pad (3.0 g; 30.0 mmol) followed
by evaporation and drying under vacuum. For more details, see Scheme 1 and Section 3.1.

Synthesis of methyltrioctylammonium amphotericin B, [Aliquat][AmB]:
Following the general procedure, tri-octylmethylammonium chloride (0.100 g; 0.246 mmol)

was converted into hydroxide and, afterward, added to amphotericin B (0.251 g; 0.271 mmol)
predissolved in 1 M dried triethylamine methanolic solution. The desired product was
obtained as an orange solid (0.176 g; 67.1%). [α]D

25: 162.0◦ ± 0.6 (c = 1 mg mL−1 in
methanol); 1H-NMR (400.13 MHz, (CD3)2SO, Figure S1): δ = 6.47−6.05 (m, 16 H), 5.73 (bs,
1 H), 5.51−5.13 (m, 4 H), 4.79−3.36 (m, 24 H), 3.17 (t, 8 H, J = 7.5 Hz), 3.09−3.01 (m, 4 H),
2.92 (s, 3 H), 2.33−2.15 (m, 6 H) 1.86−1.71 (m, 4 H), 1.59 (bs, 8 H), 1.25 (m, 27 H), 1.15 (d,
3 H, J = 5.4 Hz), 1.11 (d, J = 5,4Hz, 3 H), 1.03 (d, 6 H, J = 5.5 Hz), 0.91 (d, 3 H, J = 6.8 Hz),
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0.86 (bs, 12 H); FTIR (KBr, Figure S2): υ = 3441, 3014, 2925, 2854, 1716, 1690, 1638, 1617,
1579, 1565, 1458, 1402, 1383, 1324, 1271, 1181, 1126, 1110, 1070, 1037, 1011, 903, 854, 808,
719 cm−1; MALDI-TOF-MS analysis in positive ion mode: m/z calculated for C25H54N+

368.4251, found 368.4251; and in negative ion mode: m/z calculated for C47H72NO17
−

922.4806, found [M-2H]− 920.4777.
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Synthesis of choline amphotericin B, [Ch][AmB]:
Following the general procedure, 2-hydroxy-ethyltrimethylammonium chloride (0.036 g;

0.254 mmol) was converted into hydroxide and, afterward, added to amphotericin B
(0.249 g; 0.269 mmol) predissolved in 1 M dried triethylamine methanolic solution. The
desired product was obtained as an orange solid (0.134 g; 51.1%). [α]D

25: 50.0◦ ± 5.8
(c = 1 mg mL−1 in methanol); 1H-NMR (400.13 MHz, (CD3)2SO, Figure S3): δ = 6.47−5.97
(m, 14 H), 5.68 (bs, 1 H), 5.46−5.40 (m, 1 H), 5.35−5.32 (m, 1 H), 5.24−5.20 (m, 1 H),
4.98−4.74 (m, 1 H), 4.63 (bs, 1 H), 4.34 (bs, 1 H), 4.37−4.32 (m, 1 H), 4.26−4.24 (m, 1 H),
4.08−4.04 (m, 1 H), 3.84−3.83 (m, 6 H), 3.61−3.64 (m, 4 H), 3.60−3.38 (m, 10 H), 3.10 (s, 9
H), 2.33−2.27 (m, 3 H), 2.15 (d, 1 H, J = 5.8 Hz), 1.91−1.70 (m, 1 H), 1.65−1.31 (m, 10 H),
1.23 (s, 3 H), 1.14 (d, 3 H, J = 5.6 Hz), 1.10 (d, 3 H, J = 6.1 Hz), 1.03 (d, 3 H, J = 6.0 Hz), 0.91
(d, 3 H, J = 7.0 Hz), 0.83 (t, 3 H, J = 6.7 Hz) ppm; FTIR (KBr, Figure S4): υ = 3398, 3018,
2917, 2077, 1638, 1577, 1559, 1506, 1460, 1401, 1387, 1324, 1270, 1183, 1130, 1110, 1073, 1035,
982, 956, 851, 721 cm−1; MALDI-TOF-MS analysis in positive ion mode: m/z calculated
for C5H14NO+ 104.1070, found 104.1080; and in negative ion mode: m/z calculated for
C47H72NO17

− 922.4806, found [M-2H]− 920.6717.
Synthesis of 1-(2-hydroxyethyl)-3-methylimidazolium amphotericin B, [C2OHMIM][AmB]:
Following the general procedure, 1-(2-hydroxyethyl)-3-methylimidazolium chloride

(0.040 g; 0.226 mmol) was converted into hydroxide and, afterward, added to amphotericin
B (0.251 g; 0.272 mmol) predissolved in 1 M dried triethylamine methanolic solution. The
desired product was obtained as an orange solid (0.173 g; 72.8%). [α]D

25: 63.0◦ ± 5.8
(c = 1 mg mL−1 in methanol); 1H-NMR (400.13 MHz, (CD3)2SO, Figure S5): δ = 9.10 (s, 1
H), 7.72 (s, 1 H), 7.69 (s, 1 H), 6.48−5.96 (m, 14 H), 5.69 (bs, 1 H), 5.53−5.40 (m, 1 H), 5.32 (bs,
1 H), 5.21−5.10 (m, 1 H), 4.86−4.70 (m, 2 H), 4.65−4.57 (m, 2 H), 4.44−4.33 (m, 2 H), 4.21 (t,
3 H, J = 4.9 Hz), 4.08−4.03 (m, 2 H), 3.86 (s, 3 H), 3.72 (t, 3 H, J = 4.9 Hz), 3.64−3.17 (m, 12 H),
3.13−2.84 (m, 5 H), 2.36−2.28 (m, 2 H), 2.16 (d, 1 H, J = 5.9 Hz), 1.86−1.23 (m, 16 H), 1.14 (d,
3 H, J = 5.9 Hz), 1.11 (d, 3 H, J = 6.1 Hz), 1.04−1.01 (m, 3 H), 0.91 (d, 3 H, J = 6.9 Hz) ppm;
FTIR (KBr, Figure S6): υ = 3436, 2924, 2856, 1637, 1567, 1490, 1468, 1458, 1403, 1389, 1328,
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1272, 1233, 1183, 1132, 1104, 1071, 1009, 978, 905, 857, 776, 721, 687 cm−1; MALDI-TOF-MS
analysis in positive ion mode: m/z calculated for C6H11N2O+ 127.0866, found 127.0710; and
in negative ion mode: m/z calculated for C47H72NO17

− 922.4806, found [M-2H]− 920.4689.
Synthesis of 1-(2-methoxyethyl)-3-methylimidazolium amphotericin B, [C3OMIM][AmB]:
Following the general procedure, 1-(2-methoxyethyl)-3-methylimidazolium chloride

(0.041 g; 0.252 mmol) was converted into hydroxide and, afterward, added to amphotericin
B (0.251 g; 0.272 mmol) predissolved in 1 M dried triethylamine methanolic solution. The
desired product was obtained as an orange solid (0.159 g; 59.5%). [α]D

25: 41.0◦ ± 7.1
(c = 1 mg mL−1 in methanol); 1H-NMR (400.13 MHz, (CD3)2SO, Figure S7): δ = 9.11 (s, 1
H), 7.73 (s, 1 H), 7.70 (s, 1 H), 6.51−5.96 (m, 14 H), 5.71 (bs, 1 H), 5.53−5.40 (m, 2 H), 5.35
(bs, 1 H), 5.21−5.11 (m, 1 H), 4.85−4.63 (m, 5 H), 4.57−4.56 (s, 2 H), 4.36−4.34 (m, 4 H),
4.26−4.22 (m, 2 H), 4.19−4.14 (m, 2 H), 4.07−4.04 (m, 2 H), 3.58−3.36 (m, 12 H), 3.26 (s, 3
H), 2.33−2.25 (m, 2 H), 2.16 (d, 1 H, J = 5.6 Hz), 1.91−1.23 (m, 16 H), 1.15 (d, 3 H, J = 5.7 Hz),
1.11 (d, 3 H, J = 6.2 Hz), 1.04 (d, 3 H, J = 5.9 Hz), 0.91 (d, 3 H, J = 6.9 Hz) ppm; FTIR (KBr,
Figure S8): υ = 3435, 2921, 2848, 1656, 1648, 1579, 1561, 1490, 1480, 1456, 1385, 1322, 1262,
1179, 1130, 1106, 1069, 1039, 1009, 901, 853, 776, 719, 685 cm−1; MALDI-TOF-MS analysis in
positive ion mode: m/z calculated for C6H11N2O+ 127.0866, found 127.0710; and in negative
ion mode: m/z calculated for C47H72NO17

− 922.4806, found [M-2H]− 920.4689.
Synthesis of cetylpyridinium amphotericin B, [C16Pyr][AmB]:
Following the general procedure, cetylpyridinium chloride (0.088 g; 0.246 mmol) was

converted into hydroxide and, afterward, added to amphotericin B (0.250 g; 0.271 mmol)
predissolved in 1 M dried triethylamine methanolic solution. The desired product was
obtained as an orange solid (0.215 g; 71.3%). [α]D

25: 49.7◦ ± 5.8 (c = 0.2 mg mL−1 in
methanol); 1H-NMR (400.13 MHz, (CD3)2SO, Figure S9): δ = 9.10 (d, 2 H, J = 5.6 Hz), 8.60
(t, 1 H, J = 7.6 Hz), 8.16 (t, 2 H, J = 6.7 Hz), 6.47−5.97 (m, 14 H), 5.65 (bs, 1 H), 5.51−5.40 (m,
1 H), 5.33−5.31 (m, 1 H), 5.21−5.20 (m, 1 H), 4.79−4.78 (m, 3 H), 4.59 (t, 3 H, J = 7.4 Hz),
4.34 (bs, 1 H), 4.24−4.23 (m, 2 H), 4.17−4.12 (m, 1 H), 4.07−4.05 (m, 1 H), 3.74−2.81 (m, 12
H), 2.41−2.25 (m, 3 H), 2.15 (d, 1 H, J = 5.7 Hz), 1.91−1.89 (m, 2 H), 1.82−1.37 (m, 16 H),
1.27−1.23 (m, 28 H), 1.14 (d, 3 H, J = 5.8 Hz), 1.11 (d, 3 H, J = 6.1 Hz), 1.03 (d, 3 H, J = 5.9 Hz),
0.90 (d, 3 H, J = 6.9 Hz), 0.85 (t, 3 H, J = 6.7 Hz) ppm; FTIR (KBr, Figure S10): υ = 3435, 3010,
2920, 2852, 1638, 1579, 1563, 1488, 1456, 1401, 1383, 1340, 1324, 1272, 1181, 1130, 1108, 1069,
1037, 1009, 982, 908, 887, 853, 772, 719, 683 cm−1; MALDI-TOF-MS analysis in positive ion
mode: m/z calculated for C21H38N+ 304.2999, found 304.3117; and in negative ion mode:
m/z calculated for C47H72NO17

− 922.4806, found [M-2H]− 920.5183.
Synthesis of trihexyltetradecylphosphonium amphotericin B, [P6,6,6,14][AmB]:
Following the general procedure, trihexyltetradecylphosphonium chloride (0.127 g;

0.246 mmol) was converted into hydroxide and, afterward, added to amphotericin B
(0.251 g; 0.270 mmol) predissolved in 1 M dried triethylamine methanolic solution. The
desired product was obtained as an orange solid (0.195 g; 75.0%). [α]D

25: 95.0◦ ± 3.8
(c = 1 mg mL−1 in methanol); 1H-NMR (400.13 MHz, (CD3)2SO, Figure S11): δ = 6.35−6.02
(m, 16 H), 5.71 (bs, 1 H), 5.53−5.21 (m, 6 H), 4.79−3.89 (m, 24 H), 2.12 (t, 12 H, J = 14.3 Hz),
1.47−1.37 (m, 24 H), 1.29−1.24 (m, 47 H), 1.13 (dd, 2 H, J = 16.5 and 5.9 Hz), 1.06−0.99
(m, 3 H), 0.87 (t, 12 H, J = 7.3 Hz) ppm; FTIR (KBr, Figure S12): υ = 3435, 2921, 2848, 1656,
1648, 1579, 1561, 1490, 1480, 1456, 1385, 1322, 1262, 1179, 1130, 1106, 1069, 1039, 1009, 901,
853, 776, 719, 685 cm−1; MALDI-TOF-MS analysis in positive ion mode: m/z calculated for
C32H68P+ 483.51, found 483.4919; and analysis in negative ion mode: m/z calculated for
C47H72NO17

− 922.4806, found [M-2H]− 920.6147.

2.2. Biological Activity against Leishmania infantum

To evaluate the biological activity of amphotericin B organic salts, Leishmania infan-
tum promastigotes were selected as a biologically relevant model to test the effectiveness
of newly prepared compounds. In this context, a cloned line of virulent L. infantum
(MHOM/MA/67/ITMAP-263) was maintained at 27 ◦C in RPMI 1640 medium supple-
mented with 10% FCS, 2 mM L-glutamine, 100 U mL−1 penicillin, 100 mg mL−1 strep-
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tomycin and 20 mM HEPES buffer, all acquired from Lonza. The promastigotes were
subcultured each week with dilutions of 1 × 106 parasites/mL. After 5 days, they became
stationary, reaching a density of around 2 × 107 parasites/mL. A maximum of 10 passages
is recommended. After 10 passages, a new culture was started with parasites recovered
from infected mice.

The efficacy of OSILs-AmB against the promastigote forms was evaluated using a
modified resazurin-based assay. In this context, the compounds of interest were prepared
by serial dilution in a 96-well plate with a final volume of 100 µL. Then, 100 µL of a
4 × 107 parasites/mL parasite solution was added for a final density of 2 × 106 para-
sites/mL in the well. After 72 h of incubation at 27 ◦C, 20 µL of a 0.5 mM resazurin solution
was added and plates were incubated for further 4 h under the same conditions. Then,
fluorescence was measured in excitation (540 nm) and emission (620 nm) wavelengths
using a Synergy 2 Multi-Mode Reader (Biotek). For each individual assay, the Z factor was
calculated through Zf = 1 − [3 × (σp + σn)/|µp − µn|], where µ and σ are, respectively,
the means and the standard deviations of both positive and negative controls and Zf is the
Z-Factor. In addition, the IC50 value was determined to evaluate the antiparasitic effect.
A non-linear regression analysis was conducted on Prism 9 for Windows (Version 9.4.0),
corresponding to the averages of the results obtained in at least two independent experi-
ments. Lastly, the investigation of the potential synergism in the context of [P6,6,6,14][AmB]
activity [63] was performed with Compusyn software 1.0 [63].

3. Results and Discussion
3.1. Synthesis and Chemical Characterization of OSILs Based on Amphotericin B

Amphotericin B becomes unstable in the presence of light and oxygen, being also
difficult to solubilize in most common organic solvents and at low pH [6,64]. Thus, in
order to synthesize OSILs-AmB, a buffer neutralization method (1 M ammonium solution
media) was first performed, aiming to stabilize the neutral/zwitterionic AmBH, a strategy
previously implemented in the case of ampicillin [62] (also unstable, insoluble and in the
zwitterionic form). However, the ammonia buffer solution could not protect amphotericin
B from degradation and the resulting 1H-NMR spectra were unclear. Additionally, the
desired [AmB]− molecular peak (m/z 922 in negative mode) was absent in MALDI-TOF-MS
spectra, as only one fragment was detected with m/z 420. One possible explanation is
the occurrence of Grob fragmentation (Figure 2) starting from the labile hemiacetal group
together with the elimination and hydrolysis of β-hydroxyester, originating Fragment B.
For the case herein studied, the fragmentation of amphotericin B molecule might have
started in the labile hemiacetal group promoted by the attack of an aqueous base with con-
secutive separation of the amino sugar (Fragment A), as depicted in Figure 2. Furthermore,
elimination of the ester β-hydroxyl group is promoted by an aqueous base and followed by
ester hydrolysis to form Fragment B. All three reactions are plausible in a basic aqueous
solution. Therefore, as alternative, several other reaction conditions and solvents were
tested, although degradation was always present and easily recognizable experimentally
by precipitation of some crystalline substance from amphotericin B solutions (presumably,
amino sugar—Fragment A).

Finally, after many unsuccessful attempts, solubilization of the neutral/zwitterionic
AmBH was achieved with a methanolic solution of dry triethylamine. Since no sign of
degradation was identified, the neutralization reaction was performed under these water-
reduced buffer conditions (Scheme 1). In this context, amphotericin B was dissolved in
1 M dry triethylamine methanolic solution and, then, the solution containing the selected
organic cation in its hydroxide form was added. The reaction mixture was left to stir for 1 h
at room temperature, after which the solvent was evaporated and the resulting compound
was purified by crystallization and subsequent filtration of the methanolic solution through
a calcium carbonate pad. Lastly, the solvent was again evaporated and the compounds were
isolated pure in moderate to high yields (51–75%, see Section 2.1). The prepared OSILs-
AmB were characterized by 1H-NMR, as well as FTIR and MALDI-TOF analyses in positive
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and negative ion modes. The latter technique confirmed, on the positive and negative ion
modes, the presence of the respective cation and the [M-H2]− ion derived from the [AmB]
anion [21]. Moreover, the specific optical rotation ([α]D

25) of the prepared compounds was
also measured and is depicted in Scheme 1. Interestingly, the results obtained followed
the same trends observed in ionic liquids based on chiral amino acids. Carreira et al. [65]
reported that the optical rotation magnitude of amino acid’s chiral precursors is higher
than the ones detected for ionic derivatives. Herein, it is known that the [α]D

24 of neat
amphotericin B is 333◦ in acidic N,N-dimethylformamide conditions [66]. When coupled
with the studied organic cations, the [α]D

25 found were between 41◦ and 162◦. In addition,
even though both [Aliquat][AmB] and [Ch][AmB] are substituted tetralkylammonium
derivatives, the magnitude of optical rotations is significantly different, being 162◦ for
the first and 50◦ for the latter, which was also registered for analogues derivatives by
Carreira et al. [66]. Furthermore, the [α]D

25 values might be a useful tool for monitoring
the decomposition of the prepared compounds due to the low stability of amphotericin
B and its derivatives in solution, avoiding the use of more sophisticated techniques. It is
worth noting that no degradation was detected during the experimental work reported.
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3.2. Biological Activity against Leishmania infantum

Aiming to evaluate the biological activity against Leishmania infantum promastigotes of
the prepared compounds, the half maximal inhibitory concentration (IC50) of both OSILs-
AmB and the starting organic cations in their chloride form was determined. Moreover, the
relative decrease in IC50 (RDIC) of each formulation containing the API was also calculated.
The results collected are displayed in Table 1. Figures S13 and S14 comprise complementary
information related to the antiparasitic activity.
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Table 1. IC50 of OSILs-AmB and organic cations in their chloride form, as well as the RDIC obtained
for formulations containing the API.

Compound IC50
1 (nM) RDIC 2

AmBH 86.6 [80.67 to 92.96] -
[Aliquat][Cl] 299.7 [190.1 to 472.3] -

[Ch][Cl] N.A. -
[C2OHMIM][Cl] N.A. -
[C3OMIM][Cl] N.A. -

[C16Pyr][Cl] 482.8 [356.1 to 654.5] -
[P6,6,6,14][Cl] 204.4 [183.2 to 228.2] -

[Aliquat][AmB] 80.38 [73.39 to 88.03] 1.08
[Ch][AmB] 109.6 [95.64 to 125.6] 0.79

[C2OHMIM][AmB] 119.5 [99.10 to 144.0] 0.72
[C3OMIM][AmB] 88.26 [78.60 to 99.11] 0.98

[C16Pyr][AmB] 103.7 [90.53 to 118.7] 0.84
[P6,6,6,14][AmB] 61.4 [53.68 to 70.21] 1.41

1 The IC50 95% confidence intervals are provided between brackets. 2 RDIC is the relative decrease in IC50
(RDIC = IC50_AmB/IC50_OSILs-AmB). N.A.—not active in the concentration range tested.

Regarding the IC50 obtained by this biological assay, [P6,6,6,14][AmB] (61.4 nM) exhib-
ited the lowest value, indicating the highest growth inhibition capacity when compared
to the original AmBH (86.6 nM). This implies that is required less quantity to achieve the
same biological outcome and, therefore, this formulation is the most promising one. The re-
maining OSILs-AmB were classified according to the decrease in antiparasitic activity: [Ali-
quat][AmB] > [C3OMIM][AmB] > [C16Pyr][AmB] > [Ch][AmB] > [C2OHMIM][AmB]. For
the organic cations in their chloride form, only [P6,6,6,14][Cl], [Aliquat][Cl] and [C16Pyr][Cl]
present anti-Leishmania activity in the tested concentrations range. Nonetheless, the ob-
tained values are not statistically relevant since they are much higher than the IC50 value of
AmBH. All compounds were tested in order to demonstrate if the starting materials exhibit
any activity against this protozoan disease, allowing the conclusion that the improvements
concerning the biological activity of OSILs-AmB are associated with the incorporation of
this pharmaceutical drug.

In order to fully understand the impact of each formulation in the anti-Leishmania
activity when compared with API, the relative decreases in inhibitory concentrations (RDIC)
were calculated. Higher RDIC values are desirable as they indicate increased activity of the
OSILs-AmB in respect to the starting agent. These values, displayed in Table 1, highlight
that only [P6,6,6,14][AmB] is more active against L. infantum promastigotes than AmBH
alone. Moreover, the other OSILs-AmB exhibited values below 1, with the exception of
[Aliquat][AmB] and [C3OMIM][AmB], which registered very similar biological activity
to AmBH.

In general, the improvements detected in the antileishmanial activity promoted by the
formulations herein studied are similar to the ones reported for homologues compounds in
antifungal assays [61]. In both cases, fungi and protozoa, the drug’s mechanism of action is
the same and translates into the interaction with ergosterol, found in cell membranes, and
the consequent membrane disruption. Moreover, the contribution of some hydrophobic
organic cations may provide some enhancements in bioactivity, although individual effects
are not necessarily identical (e.g., the RDIC obtained here for [C16Pyr][AmB] is 0.84, while
the same formulation exhibit a positive effect against fungi). On the contrary, for polar
cations, as choline, an opposite phenomenon can occur, probably, due to ion trapping of
AmBH in solution, as previously reported for tests conducted on fungi [61].

Lastly, as mentioned before, [P6,6,6,14][AmB] is the most promising formulation, re-
vealing higher antiparasitic activity. Therefore, the possible synergism in the antiprotozoal
activity was evaluated, since other combinatorial therapies with AmBH have already
demonstrated significant synergistic effects responsible for the improvement in their thera-
peutic index [61]. Considering the relevant counterion activity, we evaluated the possibility
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of synergy in the antiprotozoal activity. This concept is well established and describes
the enhancing effect associated with individual distinct chemical entities that, when com-
bined, present an effect that is greater than the predicted sum of the individual effects.
For example, the activity of two agents seems significantly different when compared to
the prevalent antagonistic interaction of bactericidal and bacteriostatic antibiotics when
administered jointly. Upon evaluation of synergism, using the median effect analysis, we
observed that the antiparasitic potency of [P6,6,6,14]+ is sufficient to partially overlap the
[AmB]− potency, leading to a small incremental potency (Figures S13 and S14). The isobolo-
gram plot of [P6,6,6,14][AmB] (Figure S15) suggests that the activity of [P6,6,6,14]+ was nearly
additive to the activity of [AmB]−. Overall, these results show that IL combination could
be a good alternative to enhance amphotericin B as an anti-Leishmanial. Further studies
to find new counterions with antiparasitic potential and possible synergic effects with
[AmB]− are desired, due to the possibility of enhancing the AmBH antiparasitic activity,
while reducing simultaneously the risk of treatment failure associated to the generation of
resistant parasites.

4. Conclusions

This work emphasizes the use of a simple buffer neutralization method to synthesize
organic salts and ionic liquids based on complex antimicrobial agents, such as amphotericin
B or other molecules containing fragile chemical groups. The crucial step to successfully
prepare the desired products is dissolving the API in 1 M dry triethylamine buffer methano-
lic solution, which impaired the occurrence of Grob fragmentation and the consequent
degradation of AmBH. Furthermore, this innovative synthetic procedure allowed OSILs-
AmB to be obtained in high yields and purity levels through an easier and faster process.
The resulting compounds were characterized by NMR, FTIR and MALDI-TOF-MS, which
confirmed the desired chemical structure as well as the suitable proportion between cation
and anion. The specific optical rotation ([α]D

25) was also measured, revealing values that
are in agreement with the ones already reported for other organic salts combined with
chiral molecules.

Since AmBH has proven itself effective against leishmaniasis, bioactivity studies were
conducted to evaluate the therapeutic potential of the prepared formulations. In this
context, IC50 and RDIC assays were performed, which suggested that only [P6,6,6,14][AmB]
has higher activity than AmBH alone. The potential synergism in the antiprotozoal activity
was also evaluated, showing the enhancing effect of the starting chloride organic salt
form, leading to an increase in the activity of this prepared OSIL-AmB. This is quite a
promising result that prompts the way for the development of new bioactive formulations
with AmBH.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/antibiotics11121841/s1, Figures S1–S12: 1H-NMR and
FTIR spectra; Figure S13: Antiparasitic activity of AmBH and each OSIL-AmB; Figure S14: Graphical
representation depicting the average IC50 with 95% confidence interval; Figure S15: Isobologram and
combination indexes of [P6,6,6,14][AmB] and their individual moieties.
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