13 research outputs found

    Captive Breeding and Trichomonas gallinae Alter the Oral Microbiome of Bonelli’s Eagle Chicks

    Get PDF
    Bonelli’s eagle (Aquila fasciata) is an endangered raptor species in Europe, and trichomonosis is one of the menaces affecting chicks at nest. In this paper, we attempt to describe the oral microbiome of Bonelli’s eagle nestlings and evaluate the influence of several factors, such as captivity breeding, Trichomonas gallinae infection, and the presence of lesions at the oropharynx. The core oral microbiome of Bonelli’s eagle is composed of Firmicutes, Bacteroidota, Fusobacteria and Proteobacteria as the most abundant phyla, and Megamonas and Bacteroides as the most abundant genera. None of the factors analysed showed a significant influence on alfa diversity, but beta diversity was affected for some of them. Captivity breeding exerted a high influence on the composition of the oral microbiome, with significant differences in the four most abundant phyla, with a relative increase of Proteobacteria and a decrease of the other three phyla in comparison with chicks bred at nest. Some genera were more abundant in captivity bred chicks, such as Escherichia-Shigella, Enterococcus, Lactobacillus, Corynebacterium, Clostridium and Staphylococcus, while Bacteroides, Oceanivirga, Peptostreptococcus, Gemella, Veillonella, Mycoplasma, Suttonella, Alloscardovia, Varibaculum and Campylobacter were more abundant in nest raised chicks. T. gallinae infection slightly influenced the composition of the microbiome, but chicks displaying trichomonosis lesions had a higher relative abundance of Bacteroides and Gemella, being the last one an opportunistic pathogen of abscess complications in humans. Raptor’s microbiomes are scarcely studied. This is the first study on the factors that influence the oral microbiome of Bonelli’s eagle

    Multi-locus analysis resolves the epidemic finch strain of Trichomonas gallinae and suggests introgression from divergent trichomonads

    Get PDF
    In Europe, Trichomonas gallinae recently emerged as a cause of epidemic disease in songbirds. A highly virulent and clonal strain of the parasite, first found in the UK, has become the predominant strain there and spread to continental Europe. Discriminating this epidemic strain of T. gallinae from other strains necessitated development of multi-locus sequence typing (MLST). Development of the MLST was facilitated by the assembly and annotation of a 54.7 Mb draft genome of a cloned stabilate of the A1 European finch epidemic strain (isolated from Greenfinch, Carduelis chloris, XT-1081/07 in 2007) containing 21,924 protein coding genes. This enabled construction of a robust 19 locus MLST based on existing typing loci for Trichomonas vaginalis and T. gallinae. Our MLST has the sensitivity to discriminate strains within existing genotypes confidently, and resolves the American finch A1 genotype from the epidemic European finch A1 genotype. Interestingly, one isolate we obtained from a captive black-naped fruit dove Ptilinopsus melanospilus, was not truly T. ÂŹÂŹÂŹgallinae but a hybrid of T. gallinae with a distant trichomonad lineage. Phylogenetic analysis of the individual loci in this fruit dove provides evidence of gene flow between distant trichomonad lineages at two of the 19 loci examined and may provide precedence for the emergence of other hybrid trichomonad genomes including T. vaginalis

    Correction to: Prevalence and pathological lesion of Trichomonas gallinae in pigeons of Iran

    No full text

    Prevalence of Toxocara Eggs in Public Parks in the City of Valencia (Eastern Spain)

    No full text
    Toxocara spp. is one of the most common zoonotic geohelminths in the world. Its infections are associated with the accidental ingestion of contaminated soil and affecting, especially children. In this study, feces, and soil samples from 14 public parks in the city of Valencia were analyzed. The Telemann method and a modified version of a sieving technique were used to process feces and soil, respectively. None of the fecal samples and 10.9% of soil samples from five parks (35.7%) tested positive for the presence of Toxocara eggs. The most contaminated areas were the canine sanitary parks (30.8% of the samples), followed by socialization areas for dogs (9.7%); no positive samples were found at children’s playgrounds. Our results suggest that most pets in Valencia are periodically dewormed, although additional preventive measures should be applied, since the risk of infection exists probably due to the presence of stray dogs and feral cats

    Invasive Species as Hosts of Zoonotic Infections: The Case of American Mink (Neovison vison) and Leishmania infantum

    Get PDF
    Leishmania infantum produces an endemic disease in the Mediterranean Basin that affects humans and domestic and wild mammals, which can act as reservoir or minor host. In this study, we analyzed the presence of the parasite in wild American minks, an invasive species in Spain. We screened for L. infantum DNA by PCR using five primer pairs: Two targeting kinetoplast DNA (kDNA), and the rest targeting the ITS1 region, the small subunit of ribosomal RNA (SSU) and a repetitive sequence (Repeat region). The detection limit was determined for each method using a strain of L. infantum and a bone marrow sample from an infected dog. PCR approaches employing the Repeat region and kDNA (RV1/RV2 primers) showed higher sensitivity than the other PCR methods when control samples were employed. However, only PCR of the Repeat region and nested PCR of SSU (LnSSU) detected the parasite in the samples, while the other three were unable to do so. The majority of the analyzed animals (90.1%) tested positive. American mink may act as an incidental host of the disease for other mammals and should be further investigated, not only for their negative impact on the local fauna, but also as carriers of zoonotic diseases

    Avian Oropharyngeal Trichomonosis: Treatment, Failures and Alternatives, a Systematic Review

    Get PDF
    Oropharyngeal avian trichomonosis is a potentially lethal parasitic disease that affects several avian orders. This review is focused on the disease treatments since prophylactic treatment is prohibited in most countries and resistant strains are circulating. A systematic review following the PRISMA procedure was conducted and included 60 articles. Successful and non-toxic treatments of avian oropharyngeal trichomonosis started with enheptin, a drug replaced by dimetridazole, metronidazole, ornidazole, carnidazole and ronidazole. Administration in drinking water was the most employed and recommended method, although hierarchy of the avian flocks and palatability of the medicated water can interfere with the treatments. Besides pigeons, treatments with nitroimidazoles were reported in budgerigars, canaries, finches, bald eagles, a cinereous vulture and several falcon species, but resistant strains were reported mainly in domestic pigeons and budgerigars. Novel treatments include new delivery systems proved with traditional drugs and some plant extracts and its main components. Ethanolic extracts from ginger, curry leaf tree and Dennettia tripetala, alkaloid extracts of Peganum harmala and essential oils of Pelargonium roseum and some Lamiaceae were highly active. Pure active compounds from the above extracts displayed good anti-trichomonal activity, although most studies lack a cytotoxicity or in vivo test

    Prevalence of Oestrus ovis in small ruminants from the eastern Iberian Peninsula. A long-term study

    No full text
    © 2023 Royal Entomological Society. This document is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This document is the Accepted version of a Published Work that appeared in final form in Medical and Veterinary Entomology. To access the final edited and published work see https://doi.org/10.1111/mve.12634Oestrus ovis is an obligate parasite that causes myiasis in domestic ruminants, being commonly found in the Mediterranean area. From 2009 to 2019 a total of 3476 heads of culling sheep and goats from the Mediterranean coast of Spain were examined for the presence of O. ovis. The total prevalence was 56.3%, significantly higher in sheep than in goats (61.2% and 43%, respectively). Differences were found in the mean annual prevalence, with the highest value being registered in 2018 (61.7%) and the lowest in 2012 (50.3%). Autumn, for sheep, and winter, for goats, were the seasons with the highest number of infested specimens. Temperature, but not rainfall, was found to be associated with prevalence (p < 0.05). Most L1 were found in the anatomic region I (septum, meatus, and ventral conchae), while L2 and L3 were mainly located in regions II (nasopharynx, ethmoid labyrinth, and dorsal conchae), and III (sinuses). The overall intensity was 12.8 larvae per head, significantly higher in sheep (13.3) than in goats (3.5). Our results confirm the high prevalence of O. ovis in sheep and goats in this geographic area over the last decade, with the trend increasing in recent years in association with higher mean temperature
    corecore