246 research outputs found

    Solubility and crystal nucleation in organic solvents of two polymorphs of curcumin

    Get PDF
    peer-reviewedTwo crystal polymorphs of 1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (curcumin) have been obtained by crystallization from ethanol (EtOH) solution. The polymorphs have been characterized by differential scanning calorimetry, infrared spectroscopy, and X-ray powder diffraction and shown to be the previously described forms I and III. The solubility of both polymorphs in EtOH and of one polymorph in ethyl acetate (EA) has been measured between 10 degrees C and 50 degrees C with a gravimetric method. Primary nucleation of curcumin from EtOH solution has been investigated in 520 constant temperature crystallization experiments in sealed, magnetically stirred vials under different conditions of supersaturation, temperature, and agitation rate. By a thermodynamic analysis of the melting data and solubility of form I, the solid-state activity is estimated from 10 degrees C up to the melting point. The solubility is lower in EtOH than in EA, and in both solvents, a positive deviation from Raoult's law is observed. Form I has lower solubility than form III and is accordingly thermodynamically more stable over the investigated temperature interval. Extrapolation of solubility regression models indicates that there should be a low-temperature enantiotropic transition point, below which form I will be metastable. By slurry conversion experiments, it is established that this temperature is below -30 degrees C. All nucleation experiments resulted in the stable form I. The induction time is observed to decrease with increasing agitation rate up to a certain point, and then increase with further increasing agitation rate; a trend previously observed for other compounds. By correlating the induction time data obtained at different supersaturation and temperature, the interfacial energy of form I in EtOH is estimated to be 3.0 mJ/m(2). (c) 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:2183-2189, 2015ACCEPTEDpeer-reviewe

    Cdc25A phosphatase: a key cell cycle protein that regulates neuron death in disease and development

    Get PDF
    Cell cycle molecules are mostly dormant in differentiated neurons that are post-mitotic and in the G0 state of the cell cycle. However, a wealth of evidence strongly suggests that in response to a wide variety of apoptotic stimuli, including trophic factor deprivation, exposure to β-amyloid (Aβ) and DNA damage, neurons emerge from theG0 state with aberrant expression/activation of cell cycle proteins.1 This emergence is characterized by a consistent set of events related to the cell cycle that culminate in neuron death. Initial responses include activation of G1/S cyclin-dependent kinases (Cdks), such as Cdk4 that in turn phosphorylate retinoblastoma (pRb) family proteins and lead to dissociation of repressor complexes comprising E2F and pRb proteins, so that E2F-binding genes are de-repressed. Among genes that are de-repressed by loss of E2F-Rb family complexes are the B- and C-myb transcription factors that in turn transactivate Bim, a pro-apoptotic protein that promotes caspase activation and subsequent neuron death.1–4 This set of events has been termed the ‘apoptotic cell cycle pathway’.Cell division cycle 25A (Cdc25A), a member of a family comprising Cdc25A, B and C, is a dual specificity phosphatase that dephosphorylates inhibitory phosphates on adjacent threonine and tyrosine residues of Cdks such as Cdk4.5 This step is essential for initiation of cell cycle in proliferating cells. However, it was not known whether in the non-dividing neurons, the same events would activate the apoptotic cell cycle pathway. In our recent paper published in Cell Death Discovery,6 we report several novel findings regarding the potential role of Cdc25A in neuron death. First, Cdc25A is required for activation of the apoptotic cell cycle pathway and neuron death in response to nerve growth factor (NGF) deprivation and Aβ treatment. Second, Cdc25A acts upstream of Cdk-mediated Rb phosphorylation and caspase-3 cleavage. Third, NGF deprivation and Aβ lead to rapid increases in Cdc25A mRNA and protein levels. NGF withdrawal causes an increase in Cdc25A activity as well. These events occur at about the same time that apoptotic insults lead to Cdk4 activation and Rb phosphorylation in our experimental systems and well precede evident signs of neuron death

    Three new hydrochlorothiazide cocrystals: Structural analyses and solubility studies

    Get PDF
    YesHydrochlorothiazide (HCT) is a diuretic BCS class IV drug with poor aqueous solubility and low permeability leading to poor oral absorption. The present work explores the cocrystallization technique to enhance the aqueous solubility of HCT. Three new cocrystals of HCT with water soluble coformers phenazine (PHEN), 4-dimethylaminopyridine (DMAP) and picolinamide (PICA) were prepared successfully by solution crystallization method and characterized by single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), fourier transform –infraredspectroscopy (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Structural characterization revealed that the cocrystals with PHEN, DMAP and PICA exists in P21/n, P21/c and P21/n space groups, respectively. The improved solubility of HCT-DMAP (4 fold) and HCT-PHEN (1.4 fold) cocrystals whereas decreased solubility of HCT-PICA (0.5 fold) as compared to the free drug were determined after 4 h in phosphate buffer, pH 7.4, at 25 °C by using shaking flask method. HCT-DMAP showed a significant increase in solubility than all previously reported cocrystals of HCT suggest the role of a coformer. The study demonstrates that the selection of coformer could have pronounced impact on the physicochemical properties of HCT and cocrystallization can be a promising approach to improve aqueous solubility of drugs

    Macromolecular design of folic acid functionalized amylopectin- albumin core-shell nanogels for improved physiological stability and colon cancer cell targeted delivery of curcumin

    Get PDF
    Nanogels have potential for encapsulating cancer therapeutics, yet their susceptibility to physiological degradation and lack of cellular specificity hinder their use as effective oral delivery vehicles. Herein, we engineered novel albumin-core with folic acid functionalized hyperbranched amylopectin shell-type nanogels, prepared through a two-step reaction and loaded with curcumin while the proteinaceous core was undergoing thermal gelation. The nanogels had a mean hydrodynamic diameter of ca. 90 nm and ζ-potential of ca. -24 mV. Encapsulation of curcumin within the nanogels was restored, up to ca. 0.05 mg mL-1, beyond which, a gradual increase in size and a decrease in ζ-potential was observed. The core-shell structures were resilient to in vitro physiological oral-gastrointestinal digestion owing to a liquid crystalline B- and V-type polymorphism in the polysaccharide shell, the latter being driven by the shell functionalization with folic acid. Additionally, these biocompatible nanogels restored stability of the encapsulated curcumin and exhibited augmented cellular uptake and retention specifically in folate receptor-positive HT29 human colon adenocarcinoma cells, inducing early-stage apoptosis. Novel insights from this study represent a promising platform for rational designing of future oral delivery systems that can surmount physiological barriers for delivering cancer therapeutics to colon cancer cells with improved stability and specificity

    Polymorphism in secondary benzene sulfonamides

    No full text
    The role of about 20 different solvents in the crystallization of polymorphs for 13 N-phenyl benzene sulfonamides was studied. Five compounds (1, 2, 3, 7, and 11) are dimorphic, and one is trimorphic (6). All the crystalline solids were characterized by powder and single crystal X-ray diffraction, thermal analysis, hot stage microscopy, and IR and Raman spectroscopy. The phase transition from a metastable form to the stable form was examined visually for two compounds (1, 11) on a HSM and confirmed by differential scanning calorimetry and X-ray diffraction. The N-H···O hydrogen bond catemer (chain) and dimer (cyclic) motifs of the sulfonamide group were analyzed as the main difference between polymorphs of 1, 3, and 6. Weaker C-H···O interactions differentiate the molecular packing of other polymorphic systems. Accordingly, these crystal structures are referred to as synthon polymorphs. The occurrence of N-H···O catemer and dimer synthon in secondary sulfonamides is compared with crystal structures in the Cambridge database. The nearly equal probability of the dimer and catemer motifs for secondary sulfonamides (~19%) is attributed to the possibility of making the catemer synthon via both anti and syn oxygen atoms of the SO2NH group, with the former acceptor being preferred in two-thirds of the cases

    Salts and Co-crystals of Theobromine and their phase transformations in water

    No full text

    Polymorphism in isomeric dihydroxybenzoic acids

    No full text
    Multifunctional molecules are capable of assembling via different supramolecular synthons, or hydrogen bond motifs, between the same or different functional groups, leading to the possibility of polymorphism. We have employed sublimation and melt crystallization to generate two new crystalline polymorphs of 3,5-dihydroxybenzoic acid (DHBA), and a second form for 2,3-dihydroxybenzoic acid and 3,4-dihydroxybenzoic acid each. Since hydroxybenzoic acids tend to give solvate/hydrate crystal structures by solution crystallization, solvent-free methods are necessary to obtain single crystals of unsolvated forms. In addition to guest-free polymorphs, a new hydrate polymorph of 3,4-dihydroxybenzoic acid was crystallized from cold water. Polymorphs of dihydroxybenzoic acids differ in the number of symmetry-independent molecules (Z'), the nature of the hydrogen bond synthon, the molecular packing, and the unit cell parameters. Structural and thermal characterization of polymorphic phases shows that the commercial material matches with the high Z' phase for 2,3-DHBA, 3,5-DHBA, and 3,4-DHBA hydrate even though a low Z' crystal structure is known in each case. Solventless crystallization conditions at high temperature are a practical method to generate new guest-free polymorphs and high Z' crystal structures for high affinity functional group compounds

    Tuning solubility and stability of hydrochlorothiazide co-crystals

    No full text
    Hydrochlorothiazide (HCT), C7H8ClN3O4S2, is a diuretic BCS (Biopharmaceutics Classification System) class IV drug which has primary and secondary sulfonamide groups. To modify the aqueous solubility of the drug, co-crystals with biologically safe co-formers were screened. Multi-component molecular crystals of HCT were prepared with nicotinic acid, nicotinamide, succinamide, p-aminobenzoic acid, resorcinol and pyrogallol using liquid-assisted grinding. The co-crystals were characterized by FT-IR spectroscopy, powder X-ray diffraction (PXRD) and differential scanning calorimetry. Single crystal structures were obtained for four of them. The N-H center dot center dot center dot O sulfonamide catemer synthons found in the stable polymorph of pure HCT are replaced in the co-crystals by drug-co-former heterosynthons. Isostructural co-crystals with nicotinic acid and nicotinamide are devoid of the common sulfonamide dimer/catemer synthons. Solubility and stability experiments were carried out for the co-crystals in water (neutral pH) under ambient conditions. Among the six binary systems, the co-crystal with p-aminobenzoic acid showed a sixfold increase in solubility compared with pure HCT, and stability up to 24 h in an aqueous medium. The co-crystals with nicotinamide, resorcinol and pyrogallol showed only a 1.5-2-fold increase in solubility and transformed to HCT within 1 h of the dissolution experiment. An inverse correlation is observed between the melting points of the co-crystals and their solubilities
    corecore