126 research outputs found

    Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants.

    Get PDF
    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow's milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. Our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut

    Minnelide effectively eliminates CD133+ side population in pancreatic cancer

    Get PDF
    BACKGROUND: Pancreatic Ductal Adenocarcinoma (PDAC) is a devastating disease hallmarked by limited patient survival. Resistance to chemotherapy, a major cause of treatment failure in PDAC patients, is often attributed to Cancer Stem Cells (CSCs). Pancreatic CSCs are a small subset of quiescent cells within a tumor represented by surface markers like CD133. These cells are responsible not only for tumor recurrence, but also poor prognosis based on their “stem-like” characteristics. At present, conventional therapy is directed towards rapidly dividing PDAC cells and thus fails to target the CSC population. METHODS: MIA PaCa-2, S2-013 and AsPC-1 were treated with 12.5 nM triptolide (12 T cells) for 7 days. The surviving cells were recovered briefly in drug-free growth media and then transferred to Cancer Stem cell Media (CSM). As a control, untreated cells were also transferred to CSM media (CSM). The 12 T and CSM cells were tested for stemness properties using RNA and protein markers. Low numbers of CSM and 12 T cells were implanted subcutaneously in athymic nude mice to study their tumorigenic potential. 12 T and CSM cells were sorted for CD133 expression and assayed for their colony forming ability and sphere forming ability. Invasiveness of 12 T cells, CSM and MIA PaCa-2 were compared using Boyden chamber assays. RESULTS: Treated 12 T cells displayed increased expression of the surface marker CD133 and the drug transporter ABCG2 compared to untreated cells (CSM cells). Both 12 T and CSM cells formed subcutaneous tumors in mice confirming their tumor-initiating properties. When tested for invasion, 12 T cells had increased invasiveness compared to CSM cells. CD133(+) cells in both CSM and 12 T showed greater colony and sphere forming ability compared to CD133(−) cells from each group. Consistent with these data, when injected subcutaneously in mice, CD133(−) cells from CSM or 12 T did not form any tumors whereas CD133(+) cells from both groups showed tumor formation at a very low cell number. Despite pre-exposure to triptolide in 12 T CD133(+) cells, treatment of tumors formed by these cells with Minnelide, a triptolide pro-drug, showed significant tumor regression. CONCLUSION: Our results indicated that triptolide enhanced and enriched the “stemness” in the PDAC cell lines at a low dose of 12.5 nM, but also resulted in the regression of tumors derived from these cells. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12943-015-0470-6) contains supplementary material, which is available to authorized users

    Atomic Layer Deposition of 2D Metal Dichalcogenides for Electronics, Catalysis, Energy Storage, and Beyond

    Get PDF
    2D transition metal dichalcogenides (TMDCs) are among the most exciting materials of today. Their layered crystal structures result in unique and useful electronic, optical, catalytic, and quantum properties. To realize the technological potential of TMDCs, methods depositing uniform films of controlled thickness at low temperatures in a highly controllable, scalable, and repeatable manner are needed. Atomic layer deposition (ALD) is a chemical gas-phase thin film deposition method capable of meeting these challenges. In this review, the applications evaluated for ALD TMDCs are systematically examined, including electronics and optoelectonics, electrocatalysis and photocatalysis, energy storage, lubrication, plasmonics, solar cells, and photonics. This review focuses on understanding the interplay between ALD precursors and deposition conditions, the resulting film characteristics such as thickness, crystallinity, and morphology, and ultimately device performance. Through rational choice of precursors and conditions, ALD is observed to exhibit potential to meet the varying requirements of widely different applications. Beyond the current state of ALD TMDCs, the future prospects, opportunities, and challenges in different applications are discussed. The authors hope that the review aids in bringing together experts in the fields of ALD, TMDCs, and various applications to eventually realize industrial applications of ALD TMDCs.Peer reviewe

    Ophthalmic gels : past, present and future

    Get PDF

    The Influence of Transportation Accessibility on Traffic Volumes in South Korea: An Extreme Gradient Boosting Approach

    No full text
    This study explored how transportation accessibility and traffic volumes for automobiles, buses, and trucks are related. This study employed machine learning techniques, specifically the extreme gradient boosting decision tree model (XGB) and Shapley Values (SHAP), with national data sources in South Korea collected from the Korea Transport Institute, Statistics Korea, and National Spatial Data Infrastructure Portal. Several key findings of feature importance and plots in non-linear relationships are as follows: First, accessibility indicators exhibited around 5 to 10% of feature importance except for Mart (around 50%). Second, better accessibility to public transportation infrastructures, such as bus stops and transit stations, was associated with higher annual average daily traffic (AADT), particularly in metropolitan areas including Seoul and Busan. Third, access to large-scale markets may have unintended effects on traffic volumes for both vehicles and automobiles. Fourth, it was shown that lower rates of AADT were associated with higher accessibility to elementary schools for all three modes of transportation. This study contributes to (1) understanding complex relationships between the variables, (2) emphasizing the role of transportation accessibility in transportation plans and policies, and (3) offering relevant policy implications

    Understanding spatial inequalities and stratification in transportation accessibility to social infrastructures in South Korea: multi-dimensional planning insights

    No full text
    Abstract This research investigated spatial inequalities in transportation accessibility to social infrastructures (SIs) in South Korea, using a multi-dimensional methodological approach, including descriptive/bivariate analysis, explanatory factor analysis (EFA), K-Mean cluster analysis, and multinomial logit model (MNL). Our study confirmed pronounced spatial disparities in transportation accessibility to SIs, highlighting significantly lower access in rural and remote regions compared to urban centers and densely populated areas, consistent with existing literature. Building on prior findings, several additional findings were identified. First, we uncovered significant positive correlations among accessibility to different types of SIs in four critical categories: green and recreation spaces, health and aged care facilities, educational institutions, and justice and emergency services, revealing prevalent spatial inequality patterns. Second, we identified three distinct accessibility clusters (High, Middle, and Low) across the critical SI categories. Specifically, residents within the High cluster benefited from the closest average network distances to all SIs, while those in the Low cluster faced significant accessibility burdens (e.g., 22.9 km for welfare facilities, 20.1 km for hospitals, and 19.2 km for elderly care facilities). Third, MNL identified factors such as population density and housing prices as pivotal in spatial stratification of accessibility. Specifically, areas with lower SI accessibility tended to have a higher proportion of elderly residents. Also, decreased accessibility correlated with diminished traffic volumes across all transportation modes, particularly public transportation. This research contributes to enhancing our understanding of spatial inequalities in transportation accessibility to SIs and offers insights crucial for transportation and urban planning

    Pulp-dentin regeneration: current approaches and challenges

    No full text
    Regenerative endodontic procedures for immature permanent teeth with apical periodontitis confer biological advantages such as tooth homeostasis, enhanced immune defense system, and a functional pulp-dentin complex, in addition to clinical advantages such as the facilitation of root development. Currently, this procedure is recognized as a paradigm shift from restoration using materials to regenerate pulp-dentin tissues. Many studies have been conducted with regard to stem/progenitor cells, scaffolds, and biomolecules, associated with pulp tissue engineering. However, preclinical and clinical studies have evidently revealed several drawbacks in the current clinical approach to revascularization that may lead to unfavorable outcomes. Therefore, our review examines the challenges encountered under clinical conditions and summarizes current research findings in an attempt to provide direction for transition from basic research to clinical practice
    • 

    corecore