291 research outputs found

    Studies on the aetiology of kiwifruit decline: interaction between soil-borne pathogens and waterlogging

    Get PDF
    Aims: In 2012, Italian kiwifruit orchards were hit by a serious root disease of unknown aetiology (kiwifruit decline, KD) that still causes extensive damage to the sector. While waterlogging was soon observed to be associated with its outbreak, the putative role of soil microbiota remains unknown. This work investigates the role of these two factors in the onset of the disease. Methods: Historical rainfall data were analysed to identify changes that might explain KD outbreak and mimic the flooding conditions required to reproduce the disease in a controlled environment. A greenhouse experiment was thus designed, and vines were grown in either unsterilized (U) or sterilized (S) soil collected from KD-affected orchards, and subjected (F) or not (N) to artificial flooding. Treatments were compared in terms of mortality rate, growth, and tissue modifications. Results: KD symptoms were only displayed by FU-treated vines, with an incidence of 90%. Ultrastructural observations detected tyloses and fibrils in the xylem vessels of all plants, irrespective of the treatment. Phytopythium vexans and Phytopythium chamaehyphon, isolated from roots of FU plants, emerged as the associated microorganisms. Conclusions: We succeeded in reproducing KD under controlled conditions and confirmed its association with both waterlogging and soil-borne microorganism(s)

    Fibrosis Evaluation by Transient Elastography in Patients With Long-Term Sustained HCV Clearance

    Get PDF
    BACKGROUND: Reversibility of advanced fibrosis after HCV-clearance is an important goal of therapy. OBJECTIVES: Measuring liver stiffness (LS) by transient elastography (TE) might be helpful in this setting. PATIENTS AND METHODS: We evaluated 104 patients with biopsy-proven chronic hepatitis C (CHC) and sustained virological response (SVR) after Peg-Interferon (IFN) plus ribavirin since at least 18 months. HCV-eradication was confirmed searching for serum HCV-RNA (TMA® sensitivity > 5-10 IU/ml). Data from literature reported the best LS cut-off values for different stages of liver fibrosis were 7.1 kPa for Metavir stage 2 (F2), 9.5 kPa for F3 and 12.5 for cirrhosis (F4). RESULTS: TE was not reliable in four SVR obese patients. Metavir-stage of biopsy was F0-1 in 28, F2 in 47, F3 in 17 and F4 in eight patients. The median interval elapsed since achieving SVR was 36 months (range: 18-77, SD¬¬:18). Stratifying patients according to the histological stage assessed before treatment, a clear-cut gradient of LS values was observed from F0-1: median: 3.8 kPa (range: 3.5-4.9) to F2: 4.6 kPa (3.8-6.0), F3: 6.2 kPa (4.8-8.6) and F4: 8.4 kPa (6.2-9.2) (P = 0.001). Overall, 86 patients had lower values of LS than the expected LS values according to Metavir-stage. At multivariate logistic analysis γ-GT and histological steatosis were independently associated with persistence of higher values of LS. CONCLUSION: Long term responders to IFN-based therapies have lower LS values than those who are untreated and still viraemic. High levels of γ-GT and liver steatosis, all markers of insulin resistance, may hamper reduction of liver stiffness after HCV-clearance

    Determinismo genético e molecular do metabolismo de diterpenos em Coffea spp.

    Get PDF
    Cafestol e caveol são os dois principais diterpenos presentes nos frutos de café. Esses compostos específicos do cafeeiro têm se mostrado importantes na saúde humana, induzindo alterações no colesterol e ações anti-cancerígenas. Apesar da sua importância, há pouca informação sobre os princípios genéticos e moleculares de seu metabolismo. Análises fenotípicas através de HPLC, com cafés de diferentes espécies (vários genótipos por espécie), indicam uma variabilidade importante para cafestol, caveol e 16OMC. As análises in silico dos EST de Coffea permitiram identificar cDNAs parciais correspondente a um gene de CPS, dois de KO e um de KS. Análises de expressão desses genes por RTq-PCR quantitativa, em tecidos separados durante o desenvolvimento dos frutos, estão em andamento. Resultados preliminares indicam que os quatro genes alvos apresentam expressão diferencial durante o desenvolvimento dos tecidos do fruto. Os resultados de expressão serão discutidos considerando o interesse na identificação dos genes potencialmente envolvidos na regulação da concentração de cafestol e caveol

    Attenuation Imaging with Pulse-Echo Ultrasound based on an Acoustic Reflector

    Full text link
    Ultrasound attenuation is caused by absorption and scattering in tissue and is thus a function of tissue composition, hence its imaging offers great potential for screening and differential diagnosis. In this paper we propose a novel method that allows to reconstruct spatial attenuation distribution in tissue based on computed tomography, using reflections from a passive acoustic reflector. This requires a standard ultrasound transducer operating in pulse-echo mode, thus it can be implemented on conventional ultrasound systems with minor modifications. We use calibration with water measurements in order to normalize measurements for quantitative imaging of attenuation. In contrast to earlier techniques, we herein show that attenuation reconstructions are possible without any geometric prior on the inclusion location or shape. We present a quantitative evaluation of reconstructions based on simulations, gelatin phantoms, and ex-vivo bovine skeletal muscle tissue, achieving contrast-to-noise ratio of up to 2.3 for an inclusion in ex-vivo tissue.Comment: Accepted at MICCAI 2019 (International Conference on Medical Image Computing and Computer Assisted Intervention

    Model validation for a noninvasive arterial stenosis detection problem

    Get PDF
    Copyright @ 2013 American Institute of Mathematical SciencesA current thrust in medical research is the development of a non-invasive method for detection, localization, and characterization of an arterial stenosis (a blockage or partial blockage in an artery). A method has been proposed to detect shear waves in the chest cavity which have been generated by disturbances in the blood flow resulting from a stenosis. In order to develop this methodology further, we use both one-dimensional pressure and shear wave experimental data from novel acoustic phantoms to validate corresponding viscoelastic mathematical models, which were developed in a concept paper [8] and refined herein. We estimate model parameters which give a good fit (in a sense to be precisely defined) to the experimental data, and use asymptotic error theory to provide confidence intervals for parameter estimates. Finally, since a robust error model is necessary for accurate parameter estimates and confidence analysis, we include a comparison of absolute and relative models for measurement error.The National Institute of Allergy and Infectious Diseases, the Air Force Office of Scientific Research, the Deopartment of Education and the Engineering and Physical Sciences Research Council (EPSRC)

    Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells

    Get PDF
    Cell microparticles (MPs) released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5), and serotype 35 (HAdV35), respectively. We found that MPs derived from CHO cells (MP-donor cells) constitutively expressing CAR (MP-CAR) or CD46 (MP-CD46) were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR) were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins

    The ESCRT System Is Required for Hepatitis C Virus Production

    Get PDF
    BACKGROUND: Recently, lipid droplets have been found to be involved in an important cytoplasmic organelle for hepatitis C virus (HCV) production. However, the mechanisms of HCV assembly, budding, and release remain poorly understood. Retroviruses and some other enveloped viruses require an endosomal sorting complex required for transport (ESCRT) components and their associated proteins for their budding process. METHODOLOGY/PRINCIPAL FINDINGS: To determine whether or not the ESCRT system is needed for HCV production, we examined the infectivity of HCV or the Core levels in culture supernatants as well as HCV RNA levels in HuH-7-derived RSc cells, in which HCV-JFH1 can infect and efficiently replicate, expressing short hairpin RNA or siRNA targeted to tumor susceptibility gene 101 (TSG101), apoptosis-linked gene 2 interacting protein X (Alix), Vps4B, charged multivesicular body protein 4b (CHMP4b), or Brox, all of which are components of the ESCRT system. We found that the infectivity of HCV in the supernatants was significantly suppressed in these knockdown cells. Consequently, the release of the HCV Core into the culture supernatants was significantly suppressed in these knockdown cells after HCV-JFH1 infection, while the intracellular infectivity and the RNA replication of HCV-JFH1 were not significantly affected. Furthermore, the HCV Core mostly colocalized with CHMP4b, a component of ESCRT-III. In this context, HCV Core could bind to CHMP4b. Nevertheless, we failed to find the conserved viral late domain motif, which is required for interaction with the ESCRT component, in the HCV-JFH1 Core, suggesting that HCV Core has a novel motif required for HCV production. CONCLUSIONS/SIGNIFICANCE: These results suggest that the ESCRT system is required for infectious HCV production

    A Concerted Action of Hepatitis C Virus P7 and Nonstructural Protein 2 Regulates Core Localization at the Endoplasmic Reticulum and Virus Assembly

    Get PDF
    Hepatitis C virus (HCV) assembly remains a poorly understood process. Lipid droplets (LDs) are thought to act as platforms for the assembly of viral components. The JFH1 HCV strain replicates and assembles in association with LD-associated membranes, around which viral core protein is predominantly detected. In contrast, despite its intrinsic capacity to localize to LDs when expressed individually, we found that the core protein of the high-titer Jc1 recombinant virus was hardly detected on LDs of cell culture-grown HCV (HCVcc)-infected cells, but was mainly localized at endoplasmic reticulum (ER) membranes where it colocalized with the HCV envelope glycoproteins. Furthermore, high-titer cell culture-adapted JFH1 virus, obtained after long-term culture in Huh7.5 cells, exhibited an ER-localized core in contrast to non-adapted JFH1 virus, strengthening the hypothesis that ER localization of core is required for efficient HCV assembly. Our results further indicate that p7 and NS2 are HCV strain-specific factors that govern the recruitment of core protein from LDs to ER assembly sites. Indeed, using expression constructs and HCVcc recombinant genomes, we found that p7 is sufficient to induce core localization at the ER, independently of its ion-channel activity. Importantly, the combined expression of JFH1 or Jc1 p7 and NS2 induced the same differential core subcellular localization detected in JFH1- vs. Jc1-infected cells. Finally, results obtained by expressing p7-NS2 chimeras between either virus type indicated that compatibilities between the p7 and the first NS2 trans-membrane domains is required to induce core-ER localization and assembly of extra- and intra-cellular infectious viral particles. In conclusion, we identified p7 and NS2 as key determinants governing the subcellular localization of HCV core to LDs vs. ER and required for initiation of the early steps of virus assembly
    corecore