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Abstract. A current thrust in medical research is the development of a non-

invasive method for detection, localization, and characterization of an arterial

stenosis (a blockage or partial blockage in an artery). A method has been
proposed to detect shear waves in the chest cavity which have been generated

by disturbances in the blood flow resulting from a stenosis. In order to develop

this methodology further, we use one-dimensional shear wave experimental
data from novel acoustic phantoms to validate a corresponding viscoelastic

mathematical model. We estimate model parameters which give a good fit (in

a sense to be precisely defined) to the experimental data, and use asymptotic
error theory to provide confidence intervals for parameter estimates. Finally,

since a robust error model is necessary for accurate parameter estimates and
confidence analysis, we include a comparison of absolute and relative models

for measurement error.

1. Introduction. Coronary artery disease (CAD) is an increasingly prevalent med-
ical condition, often a precursor to and cause of a patient experiencing cardiac ar-
rest. Current methods for detection of arterial stenoses (blocked arteries) include
the angiogram and CT scans. Angiograms are viable but quite invasive, while CT
scans are expensive, introduce radiation into the patient, and can only detect hard
plaques (blockages). A desirable new detection method would be noninvasive and
less expensive but still effective. To this end, using acoustic waves generated by
stenoses has been proposed. This would place sensors on the surface of the chest
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to listen for sounds from coronary arteries, with the hope of detecting and then
localizing any blockages.

The current understanding (see, e.g., [8, 26, 45]) of the process is that turbulent
flow produces normal forces on the vessel walls at and downstream of a stenosis,
which then exert pressure on the vessels wall causing a small displacement in the
surrounding soft tissue. Previous work (e.g. [2, 32, 46, 43, 44, 52, 56]) has demon-
strated the existence of such sounds, and that they are possible to detect on the
surface of the chest. We thus see that the system couples two processes: (1) the
generation of pressure and shear waves transmitted into the body through the arte-
rial wall as a result of the turbulent blood flow generated by a stenosis, and (2) the
propagation of pressure and shear waves through the chest to sensors attached to the
chest wall. The first process is not completely understood, though some ideas are
present in the literature. Various researchers [24, 25, 26, 36, 39, 41, 45, 48, 49, 55, 59]
have directly examined modeling blood flow through arteries. All have attempted
to characterize the turbulence in the flow, which some then used to examine the
sound field propagated into the chest. In the current work, we will not focus on
aspects of turbulent flow, leaving that instead as an input to be later properly char-
acterized when the stenosed artery itself is modeled. We will focus on the second
process, understanding the propagation of sounds through the chest cavity which
result from stenosed coronary arteries.

The modeling and detection of waves transmitted through the body has been
approached in different ways. One approach has focused on characterizing proper-
ties of the sounds detected on the surface of the chest, characterizing aspects such
as primary frequencies that these sounds exhibit. This line of work has been stud-
ied by Semmlow, et al., [2, 3, 4, 5, 6, 47, 53, 54, 61], as well as by other groups
[24, 25, 26, 34, 46, 56, 57, 58]. Their methods are based on general sound features
and detection through statistical methods, rather than modeling the underlying
physics of sound transmission through the body. These methods have the benefit
of being fast and fairly simple to implement, but do not provide a characterization
for the mechanisms of wave transmission.

In another direction, more relevant to the situation this paper will study, re-
searchers have worked to model the physics of sound wave transmission through
the body. As is common in many physical wave phenomena, both pressure and
shear waves propagate into the body as a result of stenosed coronary arteries. Since
shear waves in general have a lower amplitude than pressure waves, intuition might
suggest detecting pressure waves should be our focus; past research indicates the
opposite is true when seeking to detect stenoses. Various groups [28, 30, 40, 45]
have demonstrated that shear waves should be the focus of detection efforts. The
frequency ranges for shear waves resulting from coronary stenoses are below 2000
Hz [25, 28, 29, 33, 51, 53]. In the range of these frequencies, the pressure waves
propagate very quickly while shear waves propagate much more slowly, which in
practice means that pressure waves are difficult to measure. Furthermore, the lower
speed of shear waves implies a shorter wavelength for a given frequency, thus pro-
viding better spatial resolution when attempting to localize a stenosis. Also, in the
context of waves propagating in tissue or tissue-mimicking materials, shear waves
are measurable at greater distances from the source of the disturbance (see, e.g.,
Figures 9b and 10 of [28]). Thus, in this work we also focus on studying a model for
shear wave propagation (though results where we also test a pressure wave model
are available in a technical report [14]).



MODEL VALIDATION FOR STENOSIS DETECTION PROBLEM 429

The benefits of using a viscoelastic wave propagation model in various contexts
have been previously studied [28, 30, 31, 33, 37, 40, 51]. In these references, the au-
thors focused on determining the elastic modulus and viscoelastic parameter based
on the shear wave speed and attenuation in either a gel mold or physical tissue,
in both a stenosis context and general tissue shear wave propagation. The models
were developed using plane waves in such a way that algebraic expressions were
available for shear wave speed as a function of frequency, elastic modulus, and the
viscoelastic parameter. These demonstrate that modeling the underlying physics
is not only possible, but quite beneficial in understanding shear wave propagation.
These investigators also showed that a Kelvin-Voigt damping model is most appro-
priate for the situation; we will incorporate this into our model (and will discuss it
more fully later).

In this work, we will take the physical models further, developing a dynamic
model of the shear waves propagating through a tissue-mimicking material. Our
goal will be to use this viscoelastic model with data from a tissue-mimicking ho-
mogeneous gel mold to validate the model and understand the uncertainty in the
model parameters. The model here will incorporate the standard elastic modulus
and bulk viscoelastic parameter, as well as internal variables governed by relaxation
times which can be used to model how different portions of the medium relax in
different ways from being stressed. We will develop the model in such a way as to
allow for multiple internal variables. In future studies these can be used to model
the bulk effects of different types of tissue, which would be closer to the in vivo
detection problem.

The model here will continue from a previous line of work by Banks, et al., [8, 18,
19, 20, 21, 42, 50]. These models allow for a characterization of shear waves resulting
from coronary stenoses, which will assist in uncovering the coronary artery sounds
from the noisy background in the body. Initial experiments were conducted where a
gel mold was built with a tube running through the middle; cases where the tube was
unblocked were compared to those with partial blockages, and the results suggested
that there were significant differences in sound generation between the blocked and
unblocked cases. Unfortunately, this line of work ended before experimental data
could be incorporated and used to validate models. The current work returns to a
one-dimensional model and experimental setup, developing a model closely related
to that in [8] which we validate with lab data from a homogeneous gel phantom and
use to examine uncertainty in our parameter estimates. This work will examine
confidence in the relaxation times, which will demonstrate that the addition of
internal variables into the model is viable.

We now summarize the goals and direction for the current work. Here, we incor-
porate all of the aforementioned physical modeling concerns and continue the work
of our concept paper [13] by focusing on wave propagation through a homogeneous
viscoelastic medium. The constitutive relationship will be slightly more general
than in our concept paper, and is based on Fung’s viscoelastic formulation that has
been validated by actual tissue experimental data (more details below). This rela-
tionship will be used in one-dimensional shear wave dynamical models to compute
inverse problem results for the one-dimensional case using experimental data from
a tissue-mimicking gel mold. This data comes from novel acoustic phantoms built
and tested at Queen Mary, University of London (QMUL) and Barts Health Trust
(BHT) in England. The data will be taken in such a way that measured displace-
ments upon releasing a load are primarily affected by the properties of the medium.
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Displacement data for our case encodes the frequency and attenuation properties
of the medium, which we then quantify through model parameter estimation. This
will firmly set the groundwork for future investigations into validating the model
in a more complex medium, as well as investigation into a proper description of an
input for the wave propagation model; this input would result from models of the
sounds (arterial wall displacements) due to turbulent blood flow resulting from a
stenosis.

2. Experimental setup. A novel experiment has been devised at QMUL to gather
one-dimensional shear data. Devices have been designed (see left pane of Figure
1), in which an agar gel mold phantom (homogeneous, 97% water, density ρ =
1010 kg/m3) is loaded into the rig, a weight is attached applying stress to the
phantom, and then the weight is released, causing the material to oscillate. The
displacement motion of the material throughout the experiment is measured with
a laser device. This motion is due to the material response to the weight release,
and thus encodes information about the material characteristics (elastic modulus,
damping characteristics, etc.). The choice of loading and a quick release is designed
to produce dynamic data; the idea was inspired in part by the impacts the stenosed
vessel wall experiences with each heartbeat and also by past success in gathering
shear data for filled rubber elastomers using an initially loaded rubber sample which
then underwent an impulsive hammer hit (see e.g. [18, 19]). This yields one-
dimensional shear data in the radial direction perpendicular to the vertical axis
(right pane of Figure 1).
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Figure 1. Shear configuration, where LDT denotes the laser dis-
placement transducer. (left) Experimental setup of agar phantom.
(right) Schematic with one-dimensional domain denoted.

In this work, we focus on results generated from a load weight of 264 g, as this
weight level produces a well-defined response. In the future, we may also incorporate
data from smaller weight levels in order to examine the different phantom responses
to other weight levels. The gel phantoms were stored in water when not in use, which
keeps the gel at the desired 97% water composition.

When the experiment is conducted, data like those depicted in Figure 2 are
produced. The material is at rest, a weight is added and allowed to settle, then
the string holding the weight is rapidly cut with a flame to allow the material to
freely oscillate. Once oscillations have died out the material relaxes back toward a
stable state. The key pieces that will be modeled are the loading profile (loading
begins at t = Γ1 and lasts until the weight begins to be released at t = Γ3), which
we will model as instantaneous loading to position A, and the oscillations after
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Figure 2. Sample one-dimensional data. Loading of the material
(initially at rest) begins at t = Γ1, and the material is loaded and
continues to relax for t ∈ (Γ2,Γ3). At time Γ3 the load is cut
which takes roughly 10–15 ms. The gel is then freely oscillating at
Γ4 = 0, and oscillations continue for a period of time dependent on
the loading weight. The value A is the displacement of the mate-
rial at the beginning of free oscillations. The overall displacement
scale of the data is on the order of 10−4 m, while the oscillations
immediately after the weight release are on the order of 10−5 m.

weight release (free oscillations begin at t = Γ4 = 0) which are the main object
of investigations here. For more information on the experimental setup, interested
readers may refer to [27].

3. Model development and constitutive equation. With the setup of the ex-
periment in mind, we can turn to our mathematical model of wave propagation.
The model will be developed to take into account all features of the data, including
the loading profile and the relaxation present in data. Since our phantom is cylin-
drical, the model development begins with three-dimensional equations of motion
in cylindrical coordinates. These are given in [50, p.20], and also in [42], and are
derived from momentum and mass balance principles. Using the fact that the gel
is homogeneous and that there are symmetries in the experimental design, these
three-dimensional equations can be reduced to simplified one-dimensional model.

Let u(r, t) represent the displacement of the material at position r and time t,
with r ∈ (rmin, rmax) (for our device, rmin = 0.0105 m and rmax = 0.054 m) and
t > Γ1, where the time Γ1 is chosen as the beginning of any stress-strain history in
the material, and we are assuming the material has been at rest long enough that it
is only affected by displacements for t > Γ1. Then the governing partial differential
equation (PDE) becomes

ρ
∂2

∂t2
u(r, t)− ∂

∂r
σ(r, t)− σ(r, t)

r
= 0

σ(rmin, t) = g(t), u(rmax, t) = 0

u(r,Γ1) = 0, ut(r,Γ1) = 0,

(1)

where ρ is the density of the material, σ denotes the stress, g(t) is a function that
describes the loading process (to be discussed later). In order to complete these
models, we must provide a form for σ. This is the constitutive relationship, also
called the stress-strain law since it relates strain (∂u∂r ) and/or the strain rate to
stress σ. The next sections discuss this aspect of the model.
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3.1. Constitutive equation. We incorporate the previous modeling ideas to-
gether into a new constitutive equation for the shear wave PDEs (1). We develop
the constitutive equation which will be used in this work assuming that we will
be solving the model starting at t = Γ1 and thus incorporating both the loading
process and oscillations into our dynamic equations, for the time being. In Section
3.1.5, we will make an approximation to the loading process which will allow us to
focus on the dynamic oscillations of the material after the weight is released, which
is our true interest.

3.1.1. Fung’s quasi-linear viscoelastic formulation. Some of the initial investigation
into the viscoelastic nature of tissue was completed by Fung [35]. His work is
of particular interest because it was validated in actual tissue. Fung developed a
“quasi-linear” model

σ(t) =

∫ t

Γ1

G(t− s)dσ
e(λ(s))

ds
ds (2)

with a kernel of the form

G(t) =
1 + c

∫ τ2
τ1

1
τ exp(−t/τ)dτ

1 + c ln(τ2/τ1)
. (3)

Within (2), λ represents the stretch of a material (λ = 1 +ur) and σe describes the
elastic response to the elongation λ, given by (see [35, Sec. 7.6])

σe(λ) = −β + βeαur

where α and β are constants to be estimated. The parameters τ1 and τ2 are lower
and upper bounds, respectively, on relaxation times, which describe the ways in
which the material responds to imposed stresses and strains. This model incorpo-
rates a continuum τ ∈ [τ1, τ2] of relaxation times, which Fung found to be necessary
in order for his model to match the response of tissue, as well as a constant term in
the kernel. This Fung kernel will serve as a baseline for reference when developing
the model for this paper.

3.1.2. Linearized constitutive equation. One could keep nonlinearities in the consti-
tutive equation (2). However, we found (as we shall see later) that a linear constitu-
tive relationship gives a reasonable approximation to the data provided by QMUL
and BHT. To that end, we will use the first two terms of the Taylor expansion of
eαur to approximate

σe ≈ −β + β(1 + αur) = βαur = ζur (4)

where we have combined ζ = βα into a single parameter to be estimated; ζ will
be incorporated into other parameters later in model development. We can then
linearize (2) by using (4), add a Kelvin-Voigt damping term (a common linear
viscoelastic damping model [12]), and obtain

σ(t) = G1urt(t) + ζ

∫ t

Γ1

G(t− s)dur(s)
ds

ds (5)

where G(t) is a kernel to be specified. To an extent, the Kelvin-Voigt term describes
the overall nature of the damping present in the material, while the kernel G(t) will
incorporate different material responses at both the macroscopic and microscopic
levels.
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3.1.3. Existence and uniqueness for shear wave model. Before moving on to the
specific form of the constitutive equation kernel, we first establish existence and
uniqueness for the shear wave equations (1) with the constitutive equation (5). To
that end, we set up a similar framework as in the concept paper [13] and connect
those results to the current work. We will require that the following assumptions
hold:

(A1) The boundary condition function satisfies g ∈ L2(Γ1, T );
(A2) The kernel G is differentiable with respect to t and with constants c1 and c2

such that |G(t)| ≤ c1 and |Ġ(t)| ≤ c2 for all t ∈ [Γ1, T ].

Let H = L2(rmin, rmax), V = {φ|φ ∈ H1(rmin, rmax), φ(rmax) = 0}, and V∗
denote the topological dual space of V. We identify H with its topological dual H∗
and thus again obtain V ↪→ H = H∗ ↪→ V∗ as a Gelfand triple. Let Cw(Γ1, T ;V)
denote the set of weakly continuous functions in V on [Γ1, T ], and LT = {v :
[Γ1, T ]→ H | v ∈ Cw(Γ1, T ;V)∩L2(Γ1, T ;V) and vt ∈ Cw(Γ1, T ;H)∩L2(Γ1, T ;V)}.
The notion of weakly continuous (i.e., um → u in Cw(Γ1, T ;V)) means that um → u
weakly in V and uniformly in t ∈ [Γ1, T ]. Then a weak solution u ∈ LT for the
shear equation must satisfy

0 = ρ〈ut(t), ηt(t)〉 − ρ
∫ t

Γ1

〈us(s), ηs(s)〉ds+

∫ t

Γ1

g(s)η(rmin, s)ds

+G1

∫ t

Γ1

〈usr(s), ηr(s)〉ds+ ζ

∫ t

Γ1

〈∫ s

Γ1

G(s− ξ) d
dξ
ur(ξ)dξ, ηr(s)

〉
ds

−G1

∫ t

Γ1

∫ rmax

rmin

urt(r, s)

r
η(r, s)drds

−ζ
∫ t

Γ1

∫ rmax

rmin

(∫ s

Γ1

1

r
G(s− ξ)dur(r, s)

dξ
dξ

)
η(r, s)drds

(6)

for any t ∈ [Γ1, T ] and η ∈ LT and where 〈·, ·〉 is the usual inner product. Since
rmin > 0, there are no singularities in the final term in (6), and the kernel integral
in the numerator of that term will converge in the same manner as the preceding
kernel integral. Thus, the arguments from [13] apply in the case here, and we have
the following theorem:

Theorem 1. Assuming (A1) and (A2), the shear equation (1) with constitutive
relationship (5) has a unique weak solution on any finite interval [Γ1, T ].

3.1.4. Form for constitutive equation kernel G(t). We will now state the particular
kernel used for this current work, and then manipulate it into a form that gives
more physical insight and which will later allow for a conceptual framework using
internal variables. We develop this kernel from a different perspective than that
given in [13], but the resulting form will be quite similar. Using the notation and
parameter conventions of [12], we define the kernel in this work to be

G(t;P ) = κr +K(t;P ) (7)

where κr is a positive constant representing an instantaneous relaxation modulus
(justified by the fact that the gel phantom acts partly as a solid) and K(t;P ) =∫
T exp(−t/τ)dP (τ) represents a continuum of distributed relaxation times with
T = [τ1, τ2] ⊂ (0,∞) and where P (τ) is a probability measure on T . Note that

this form for G satisfies |G(t)| ≤ c1 with G clearly differentiable and |Ġ(t)| ≤ c2 for
some constants c1, c2 so that assumption (A2) is satisfied. It is also worth noting
here that our proposed kernel form (7) is similar to that in Fung’s model (3), as
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we see that κr serves as an analog to the constant portion of Fung’s kernel (i.e.,
1

1 + c ln(τ1/τ1)
) and the K(t;P ) portion is similar to the the continuous relaxation

spectrum in Fung’s model (i.e.,
c
∫ τ2
τ1

1
τ exp(−t/τ)dτ

1 + c ln(τ2/τ1)
).

We substitute (7) into (5) and manipulate the form of the stress with integration
by parts, noting that ur(Γ1) = 0 since the material is initially at rest and using the
fact that K(0;P ) = 1:

σ(t;P ) = G1urt(t) + ζ

∫ t

Γ1

G(t− s)dur(s)
ds

ds

= G1urt(t) + ζ

∫ t

Γ1

(κr +K(t− s;P ))
dur(s)

ds
ds

= (G+ ζ)ur(t) +G1urt(t)− ζ
∫ t

Γ1

∂K(t− s;P )

∂s
ur(s)ds,

(8)

where G = κrζ and with slightly more detail in [14]. This equation (8) is the general
form of the constitutive equation used here. The value G0 = G+ζ can be considered
to be a dynamic analog to the static shear modulus; this also makes clear the fact
that Hooke’s Law is incorporated into our model. We have already discussed that
G1 is the bulk damping parameter for the Kelvin-Voigt damping term. The final
integral represents a history term which describes the relaxation of the material in
response to an applied stress/strain.

We will ultimately turn to a discretized distribution model (using a discrete mea-
sure P (τ)), and connect it to the continuum model through a probability measure
approximation as in [9]. This will allow us to develop a computationally feasible
inverse problem, and also give insight into the underlying material mechanics. But
first we briefly discuss a method for approximating the loading process.

3.1.5. Approximating the loading process. Recalling Figure 2, the loading profile
is relatively long compared with the oscillatory period; since our concern is with
modeling the oscillations, solving the model from Γ1 is much longer than necessary.
Also, early experimentation with the model indicated that the parameters governing
the loading and resting process may differ from those governing the very dynamic
post-release oscillatory process.

We address these concerns by modeling the loading as instantaneous from at rest
to a displacement of A at position r = rmin. Since the material is linear, this would
then mean the phantom has the profile

u(r, t) =
A(rmax − r)
rmax − rmin

, (9)

up until the time of the weight release. Since this is an approximation, we will
neglect the times t ∈ (Γ3,Γ4), the weight release time period, since that time
frame is small relative to the loading and settling time from Γ1 to Γ3. We also
incorporate a time parameter Υ which will represent our approximation of the time
when loading begins. In the formulation here we will use the same relaxation times
during the loading process as during the oscillation period, which means that Υ
has no meaning other than as a tuning parameter that we must estimate. Thus,
we assume the given loading profiles for t ∈ (Υ, 0) since Γ4 = 0 in our convention.
This also means that Υ < 0.
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We incorporate this loading approximation into our model by manually integrat-
ing the constitutive relationship (8). For the purposes here, we will call σ̂ the full
constitutive relationship for t > Υ that is described by (8) (where we now use Υ
in the place of Γ1), and σ the constitutive relationship for t > 0. We do this for
notational simplicity in the final model, at the expense of some minor notational
confusion at the current stage. Note that (9) implies that

ur(r, t) = − A

rmax − rmin
, t ∈ (Υ, 0).

Hence, by (8) and the above equation we find

σ̂(t;P ) = (G+ ζ)ur(t) +G1urt(t)− ζ
∫ t

Υ

∂K(t− s;P )

∂s
ur(s)ds

= (G+ ζ)ur(t) +G1urt(t)− ζ
∫ 0

Υ

∂K(t− s;P )

∂s
ur(s)ds

−ζ
∫ t

0

∂K(t− s;P )

∂s
ur(s)ds

= (G+ ζ)ur(t) +G1urt(t) + ζ
A

rmax − rmin
(K(t;P )−K(t−Υ;P ))

−ζ
∫ t

0

∂K(t− s;P )

∂s
ur(s)ds

= σ(t;P )−F(t; Υ, A, P ),

where σ and F are respectively given by

σ(t;P ) = (G+ ζ)ur(t) +G1urt(t)− ζ
∫ t

0

∂K(t− s;P )

∂s
ur(s)ds, (10)

and

F(t; Υ, A, P ) = −ζ A

rmax − rmin
(K(t;P )−K(t−Υ;P ).

By (10), we then have the following:

• σ̂r = σr
• The original stress boundary condition is σ̂(rmin, t) = 0 for t > 0. Using the

preceding development, this corresponds with

0 = σ(rmin, t;P )−F(t; Υ, A, P )

which allows us to write the boundary condition for a model solved for t > 0
as

σ(rmin, t;P ) = F(t; Υ, A, P ).

We note that the term
σ̂

r
=
σ

r
− F(t; Υ, A, P )

r
results in a time-dependent forcing

term in the shear PDE.
We make two comments before discussing the internal variable forms. First, if

we assume, for example, a single relaxation time and that its value is small, say on
the order of 10−1, then the term K(t−Υ;P ) = exp(−(t−Υ)/τ1) ≈ exp(−10(t−Υ))
attains its maximum value exp(10Υ) when t = 0. Note that for, say, Υ < −1, this
term is negligible. Relaxation times on this order are what we can later obtain in
the inverse problem, which would imply that in our case the material is at rest after
being loaded sufficiently long that it “forgets” its loading history by the time the
weight is released. This is good from an experimental standpoint, since the loading
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process will never be quite uniform. It is also good to know from a computational
perspective; we can limit Υ to being greater than some value, such as −20 <
Υ < 0, which will keep the optimization algorithm from marching off unnecessarily
(which occurred in some of our early inverse problem tests). Second, since we have
integrated out the loading history, we now start the model at the time of weight
release, t = 0. This means that the material is considered at rest just prior to the
release; thus, in the history integrals we will discuss in the next section, all the
history now starts at t = 0 since the history before that point will be incorporated
into the initial loading profile and an initial stress condition.

3.1.6. Internal variable formulation. In the previously noted work on this stenosis
problem, the double integrals that resulted from using the continuum of relaxation
times in the stress equation were computationally intractable so another approach
was required. The idea was to use a discrete number of internal variables. As
will be noted, these gave rise to a differential form which was an improvement
computationally since it led to purely differential equations in the model rather
than inclusion of an integro-differential equation. With the advances in desktop
computation abilities since that time, the integral form is now reasonable to use in a
dynamic model. However, internal variables are still attractive in that they provide
a formulation that indicates some of the internal material dynamics. Physically, if
we assume that the molecules within the biological tissue are on a microscopic scale
then the portion of the material which is represented by each internal variable or
internal strain εj is being driven by the overall strain and has a response that varies
depending on the value of the corresponding relaxation time τj .

Previous work [8, 42, 50] assumed a discrete internal variable form as an ap-
proximation to the Fung kernel, using the nonlinear constitutive equation (2). This
discrete form assumed the kernel G(t) was in an exponential form, with the effects
brought together as a discrete sum in the constitutive equation. The results in
[8, 42, 50] demonstrate that the internal variable approach is valid and does ap-
pear to work as well as the continuum of times in the Fung kernel. A connection
between the Fung’s kernel and the discrete kernel is provided by the work in [20].
The authors there form the kernel

G(t) =

∫
T
q(t; τ)dP (τ)

where T = [τ1, τ2] ⊂ (0,∞) is the set of admissible relaxation times, P (τ) is a
probability measure on T , and q(t; τ) is a continuous function of relaxation times. If
we take q(t; τ) = exp(−t/τ), this corresponds with the kernels previously discussed.
The authors showed existence and uniqueness results for this kernel in the nonlinear
constitutive equation (2). Then, a result from [9] allows one to approximate any
measure P (τ) with a discrete measure. This discrete measure approximation leads
us back to the case with a sum of exponentials, but from the probabilistic framework
we know conclusively that we are approximating the continuous spectrum of Fung’s
kernel and that this approximation has been viable when implemented.

With this background on previous work using internal variables in hand, we move
forward by modifying our current model. We first define

ε1(t; τ) =

∫ t

0

∂

∂s
(exp (−(t− s)/τ))ur(s)ds.
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Then we manipulate the form of Equation (10) as follows:

σ(t;P ) = (G+ ζ)ur(t) +G1urt(t)− ζ
∫ t

0

∂K(t− s;P )

∂s
ur(s)ds

= (G+ ζ)ur(t) +G1urt(t)

−ζ
∫ t

0

∂

∂s

(∫
T

exp(−(t− s)/τ)dP (τ)

)
ur(s)ds

= (G+ ζ)ur(t) +G1urt(t)− ζ
∫
T
ε1(t; τ)dP (τ).

(11)

Rather than using the integral form for ε1, we can use the differential form

τ
d

dt
ε1(t; τ) + ε1(t; τ) = ur(t), ε1(0; τ) = 0 (12)

which is then solved simultaneously with the rest of the model dynamics. This is
then an internal variable or internal strain, driven by the overall strain ur(t), which
is the continuous form of the internal variable formulation.

We now may finally make the discrete assumption

P (τ) =

Np∑
j=1

pj∆τj

where ∆τj is the Heaviside function with step at τj , and pj are the proportions of

the material subject to relaxation time τj so that

Np∑
j=1

pj = 1. By substituting this

discrete P into the form for σ as developed in (11), we obtain the discrete, internal
variable form of the constitutive relationship

σ(t) =

G+

Np∑
j=1

ζj

ur(t) +G1urt(t)−
Np∑
j=1

ζjε
j(t), (13a)

with internal variables obeying (for j = 1, 2, . . . , Np)

τj
d

dt
εj(t) + εj(t) = ur(t), εj(0) = 0, (13b)

and where we have defined ζj = ζpj so that ζ =

Np∑
j=1

ζj , and εj = ε1(·; τj).

3.2. Final shear wave model. We now put together the shear wave equation (1),
using the constitutive equation (13) but with the loading history approximation
incorporated as discussed in Section 3.1.5. Recall also that the discrete assumption
for P and the form of K gives us

ζK(t;P ) = ζ
∑Np

j=1 pj exp(−t/τj) =
∑Np

j=1 ζj exp(−t/τj).

These equations are just manipulated versions of the general equations of Theorem
1, so we still know a unique weak solution exists on any finite time interval.
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The shear wave equation, solved for t > 0 which is the release time, is then

ρ
∂2

∂t2
u(r, t)− ∂

∂r
σ(r, t)− σ(r, t)

r

=
1

r

A

rmax − rmin

 Np∑
j=1

ζj exp(−t/τj)−
Np∑
j=1

ζj exp(−(t−Υ)/τj)

 ,
σ(rmin, t) =

−A
rmax − rmin

 Np∑
j=1

ζj exp(−t/τj)−
Np∑
j=1

ζj exp(−(t−Υ)/τj)

 ,
u(rmax, t) = 0, u(r, 0) =

A(rmax − r)
rmax − rmin

, ut(r, 0) = 0,

(14a)
where

σ(t) =

G+

Np∑
j=1

ζj

ur(t) +G1urt(t)−
Np∑
j=1

ζjε
j(t), (14b)

with the internal variables subject to (for j = 1, 2, . . . , Np)

τj
d

dt
εj(t) + εj(t) = ur, εj(0) = 0. (14c)

We note that G0 = G+

Np∑
j=1

ζj is the dynamic analog of the shear modulus.

3.3. Numerical method. The shear wave model (14) is numerically solved by
using a high order space-time finite element method. Specifically, in time, we use a
discontinuous Galerkin method composed of normalized Legendre polynomials (of
order 4). In space, we use a continuous spectral finite element method composed
of Lagrange basis functions on Gauss-Lobatto nodes (also of order 4). Under this
scheme, the system matrices are diagonalizable (this could be lost if we did not use
normalized Legendre polynomials in time), and hence the time-coupled computa-
tions within a time step can be decoupled. This makes the reasonably high order
finite element time discretizations feasible. An argument for adopting such higher
order schemes instead of the lower order ones is that higher order spatial discretiza-
tions have been found highly desirable for wave equations in terms of the control of
dispersion errors (e.g., see [1, 23]). Moreover, higher order schemes are capable of
providing higher fidelity solutions than lower order schemes for the same amount of
computational work. This is especially important to make the inverse problem prac-
tical (as each inverse problem may require solving the forward problem (i.e., shear
wave model) hundreds of times). Further details on this numerical method are in a
forthcoming BICOM report [38], wherein an extensive set of numerical results are
given to demonstrate the favorable effect on the numerical error and computational
work of the higher order temporal and spatio-temporal approximations.

4. Inverse problem. With models in hand, we now turn to matching the model
output to data. We will use two common methods in order to estimate model
parameters. One is ordinary least squares (OLS) and the other is generalized least
squares (GLS). These will be defined later in Section 4.1.

As discussed in Section 2, an experiment has been designed to gather one-
dimensional shear data. Measurements in our experiment are taken at r = rmin,
and will be denoted by uj at measurement time point tj . Corresponding shear
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model solutions at the same spatial location will be denoted u(tj ; 10θ), where the
measurement location has been suppressed for notation convenience and where θ
represents a vector of the base-10 logarithm of each parameter (the same idea used
previously [13] to reduce parameter scaling issues). The data set has been trimmed
to the dynamic oscillations after the release, and thus the time frame is 200 ms.
The data were sampled at a rate of 2048 Hz; however, this high rate proved to
make the inverse problem difficult and computationally intractable because that
many data points resulted in the inverse problem being over determined. Instead,
we will use every other data point from the larger data set for a sampling rate of
1024 Hz which will we later refer to as the “every data point” set. We take n to be
the total number of data points for a particular data set, and thus can describe the
measurement time points for the full “every data point” set as tj = j/1024 where
j = 0, 1, . . . , n− 1. There will also be a reduced data set where we take every other
data point starting with t0 = 0, which corresponds with a data sampling rate of
512Hz.

Since some of the data points were near zero in absolute value, we found that
those points resulted in scaling problems when using the GLS model to estimate
model parameters (since the corresponding cost functional divides by the model
value as we will see later when this method is defined). To account for this, we
removed from consideration any data points uj where |uj | < 5 × 10−6. This value

was chosen by examining the data, noting that the data is on the order of 10−5

and that the “jitter” one can see in Figure 2 has a magnitude of roughly 5× 10−6

during the times before loading up to Γ1, then during the settling period from Γ2

to Γ3, and again in the settling period after the oscillations have died out. Thus,
our threshold level is below the level of noise in the data. This level also eliminated
only a few data points, while providing significantly improved GLS robustness. The
number of data points n is then reduced according to how many thresholded data
points were removed.

Before going into the setup and results for the inverse problem, we note that the
forward (i.e., direct) problem where we solve for displacement (using the method
discussed in Section 3.3) is as follows:

• Forward problem: Given G, G1, τj and ζj for j = 1, 2, . . . , Np, Υ, A,
rmin, rmax, and ρ, solve model (14) for displacement u(r, t) at each position
x ∈ [rmax, rmin] for t ∈ [0, T ].

The inverse problem we will develop here is as follows:

• Inverse problem: Given shear displacement data at r = rmin and a corre-
sponding forward problem solver for displacement, along with specified values
for ρ, rmin, and rmax, find values for the constants G, G1, τj and ζj (for
j = 1, 2, . . . , Np), A, and Υ which provide the best fit to the data (in a man-
ner which will be defined shortly).

We assume that the parameters lie in some admissible set Q ⊂ Rκ, where Q is
assumed to be compact and κ is the number of parameters requiring estimation.
Throughout the remainder of this work, we will denote the log-scaled parameter
vector (for Np = 1 and κ = 6) as

θ = (log10(G), log10(G1), log10(ζ1), log10(τ1), log10(−A), log10(−Υ)). (15)

Thus, as long as we define our cost function to be a continuous function of the
parameters, we know the inverse problem has a solution (minimizing a continuous
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function on a compact parameter space). One could broaden this parameter estima-
tion framework to the distributional case if desired, taking an admissible parameter
space as a compact subset of Euclidean space (including all parameters excuding
relaxation times) along with the space of probability measures, and use the Pro-
horov metric framework (see, e.g., [7, 15, Sec. 4]) and the approximation results of
[9]. This again leads to minimizing a continuous function of the parameters over
a compact space. Either way, the inverse problems we will shortly define will have
solutions.

4.1. Statistical models and parameter estimators. In order to carefully define
the way in which we will measure the closeness of the data to model values, we
must first discuss underlying statistical models for the error present in the data.
A proper error model is also key to correctly determining parameter confidence
intervals. Much of the discussion here is similar to that in [13], with background
on ordinary least squares (OLS) and generalized/weighted least squares (GLS or
WLS) given in [22], for example.

We will assume the errors Ej are independent, identically distributed with mean

zero (E[Ej ] = 0) and constant variance var(Ej) = σ2
0 ; this process has realizations

εj . Note that we do not assume we know the underlying distributions from which
the errors come; we only know the first two central moments as specified. We
use this error process in proposing two error models and corresponding parameter
estimators.

• Absolute error: Here we have the error process Uj = u(tj ; 10θ0) + Ej , with
realizations

uj = u(tj ; 10θ0) + εj , (16)

where θ0 is some hypothesized “true” parameter value (see [22]). We use the
ordinary least squares cost function

Jols(θ) =

n−1∑
j=0

[uj − u(tj ; 10θ)]2.

The corresponding inverse problem for the logged parameters is then

θ̂ols = arg min
θ∈Q
Jols(θ) = arg min

θ∈Q

n−1∑
j=0

[uj − u(tj ; 10θ)]2. (17)

This function minimizes the distance between the data and model where all ob-
servations are considered to have equal importance (weight). Since u(tj ; 10θ)
is a continuous function of θ, Jols is also a continuous function of θ, which
means we are minimizing a continuous function of θ over a compact set Q,
and thus this inverse problem has a solution.

• Relative error: Here we have the error process Uj = u(tj ; 10θ0)+u(tj ; 10θ0)Ej
with realizations

uj = u(tj ; 10θ0) + u(tj ; 10θ0)εj . (18)

For this case, we construct the generalized (weighted) least squares cost func-
tion (as per, e.g., [22])

Jgls(θ) =

n−1∑
j=0

w2
j [uj − u(tj ; 10θ)]2
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where we define the weights wj = u(tj ; 10θ)−1. In this case, since we are
examining a relative error model (18), these weights take into account the
unequal quality of observations; dividing by the function value has a “normal-
izing” effect on the errors, accounting for the scale differences which may be
present in the errors at larger versus smaller model values.

We now wish to find θ such that Jgls(θ) is minimized. We can either

solve this directly, or by using an iterative procedure in order to estimate θ̂gls
(since the weights must also be estimated). We will use an iterative method,
described as follows (see [22] and references therein for convergence details):

1. Define θ̂0 = θ̂ols, and set k = 0.

2. Form the weights ŵj = u(tj ; 10θ̂
k

)−1, using weight thresholding (described
below).

3. Re-estimate θ̂gls by solving

θ̂k+1 = arg min
θ∈Q

n−1∑
j=0

ŵj
2[uj − u(tj ; 10θ)]2

to obtain the k + 1 estimate θ̂k+1 for θ̂gls.
4. Set k = k+ 1 and return to Step 2. Terminate when successive estimates

for θ̂gls are sufficiently close, or when one has iterated 20 times. For our
problem, our “sufficiently close” criterion was found by determining if

||θ̂k+1 − θ̂k||∞ ≤ 10−3, where ||θ||∞ is the maximum component of the
given vector θ. The parameter values being estimated are all log-scaled,
and are thus on the order of [10−1, 101]. This puts the stopping criterion
at two orders of magnitude less than the smallest log-scaled parameter
value, which is sufficient in our problem.

Even though we have removed all data points with absolute value under 5×
10−6, we still account for the (now unlikely) possibility that some model values
may still end up small in absolute value. Thus, we incorporate thresholding
on the weights to keep from dividing by zero. We take a threshold value of
1 × 10−10, as this is almost certainly below the threshold of significance in

terms of the model displacements. Then, for all indices j̄ ∈ {k | |u(tk; 10θ̂)| <
1 × 10−10}, we set ŵj̄ = 1 × 1010. This is done each time the weights are
re-estimated in Step 2 of the iterative process.

With weight thresholding, we are assured that the iterative process is pos-
sible numerically. Thus, similar to the ordinary least squares case, at each
step k in the iterative GLS estimation process we are minimizing a contin-
uous function of θ over a compact parameter space Q, and thus the inverse
problem in each iteration will have a solution. Also, as long as the iterative
process is carried out sufficiently many times, under certain conditions the

weights will converge ŵj → u(tj ; 10θ̂gls)−1 (see, e.g., [22]).

4.1.1. Optimization considerations. As in [13], we used the Matlab Optimization

Toolbox command lsqnonlin for our optimization routine to solve for θ̂ols and

θ̂gls. We used the trust-region-reflective (TRR) algorithm that is built in; as our
previous effort in [13] demonstrated, the Levenburg-Marquardt option was slower
than TRR and did not give us better results. Since we are using at least one
relaxation time, we do not consider fmincon which we have shown to be ineffective
in estimating relaxation times.
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In order to start the optimization routines for computing θ̂ols, we must provide

initial parameter values (for θ̂gls we use the estimated value for θ̂ols as our initial
guess). From a perusal of the viscoelastic materials literature, our experience with
the previous conceptual work, and from some manual examination on the current
data sets, we chose the initial values as follows:

G = 4.5× 103 Pa, G1 = 5 Pa · s, ζ1 = 2.8× 104 Pa, τ1 = 0.06 s,
A = −1.7× 10−4 m, Υ = −0.01 s.

As log-scaled values (c.f. (15)), this gives us

θ0
ols = (3.6532, 0.6990, 4.4472,−1.2218,−3.7696,−2)T .

4.1.2. Residuals. We will also include residual plots to assist in analysis of the model
fit to data, and to indicate which error model best describes the error in the data.
Residuals give a sense for the model fit to data, but more importantly the residuals
can give an indication [22] regarding the appropriateness of our error model. If
the absolute residuals seem to be randomly dispersed around the horizontal axis
and form a horizontal band around that axis, then the absolute error model may be
correct. On the other hand, if the (modified) relative residuals seem to be randomly
dispersed, then the relative error model may be correct. We define the following:

• Absolute residuals are computed as rj = uj − u(tj ; 10θ̂), where θ̂ is the
particular parameter estimate being considered.

• Relative residuals are computed as rj = ŵj(uj − u(tj ; 10θ̂)) where ŵj =

u(tj ; 10θ̂)−1 and the ŵj are thresholded in the same manner as discussed
earlier.

4.2. Inverse problem results, Np = 1. We now demonstrate the ability of our
model to match data. For this purpose, we will take a single relaxation time (Np =
1) as that is enough to show model fidelity to data. We run both the absolute (OLS)
and relative (GLS) error models on a sample data set using a 264 g loading weight.
We will report parameter estimates, standard errors and confidence intervals, plots
of model fits to data, plots of residuals versus time, and plots of residuals versus
model values. We use these elements in order to recommend error models.

Standard errors (and corresponding confidence intervals) are computed using
asymptotic error theory. For the absolute error model, the process is the same as
that which we used in [13], and is also described in [22, Ch. 3]; for the relative error
model, the corresponding asymptotic error methodology is discussed in [22, Ch. 3].
Since the theory is common enough, we do not reiterate it here and refer interested
readers to the aforementioned references.

We have also examined parameter estimation using data sampled at different
rates. This allowed for a study of whether the parameter estimates and associated
confidence intervals remain consistent as the number of data points is reduced.
Using fewer data points is also a way of decreasing computational times for the
inverse problems. We ran the inverse problem on each data set and using each
error model using all the data points (1024 Hz) and using every other data point
(512 Hz), as discussed at the beginning of Section 4.

Our computations showed that the results for data sampled at 1024 Hz are
consistent with those found for the data sampled at 512 Hz. Hence, we report
only the results for data sampled at 512 Hz (all results for data sampling at 1024
Hz are available in [14]). The parameter estimates and confidence intervals (see
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Table 1. Shear optimization results and confidence analysis for
OLS on a 264 g data set using every other data point.

Param. Estimate SE CI95
log10(G) 3.5431 0.2498 (3.0469, 4.0393)
log10(G1) 0.3753 0.3227 (-0.2657, 1.0164)
log10(τ1) -1.4450 0.2474 (-1.9364, -0.9535)
log10(ζ1) 4.4761 0.0294 (4.4178, 4.5345)
log10(−A) -3.7501 0.0071 (-3.7643, -3.7360)
log10(−Υ) -2.1813 0.2779 (-2.7334, -1.6293)

Shear modulus dynamic analog G0 = 33.423 kPa

Table 2. Shear optimization results and confidence analysis for
GLS on a 264 g data set using every other data point.

Param. Estimate SE CI95
log10(G) 3.8649 1.0435 (1.7922, 5.9377)
log10(G1) 0.5449 0.3561 (-0.1625, 1.2523)
log10(τ1) -1.0217 1.0543 (-3.1161, 1.0726)
log10(ζ1) 4.4171 0.2918 (3.8375, 4.9967)
log10(−A) -3.8026 0.0119 (-3.8263, -3.7789)
log10(−Υ) -1.6729 1.3806 (-4.4153, 1.0695)

Shear modulus dynamic analog G0 = 33.454 kPa

[10, 11, 13, 16, 22] for information on computing confidence intervals), obtained
from the inverse problems using OLS and GLS, are shown in Tables 1-2. We ob-
serve from these two tables that the standard errors for the GLS case are larger
than in the OLS case. In addition, we see that the standard error for G1 is on the
same order of magnitude as the parameter estimate itself for both the OLS and
GLS results, and the standard errors for τ1 and Υ in the GLS case are also on the
same order of magnitude as their corresponding estimates. This is consistent with
the sensitivity results, where the model output is less sensitive to G1, τ1 and Υ than
to G, ζ1, and A (more details are available in [14]).

Model fits as well as residual plots are shown in Figure 3. In all cases, the model
fits to data are good. In the bottom row of Figure 3, the residuals versus model plots
are not noticeably different between the OLS and GLS cases. The initial indication
is that we have more confidence in the OLS results. However, the residual versus
time plots (middle row of Figure 3) raise cause for concern. In the OLS residual
versus time plots, there is a noticeable “fan” structure for early times. However,
for the GLS error model, the residual versus time plots do not show a fan structure
and are fairly randomly distributed. Since this indicates that the OLS error model
may not be correct, we are inclined to recommend the GLS error model so that we
do not mistakenly overstate our confidence in the parameter estimates, which we
could do if we used the parameter estimates from the possibly-wrong OLS case.

5. Discussion and future work. In this work, we have developed an updated
one-dimensional viscoelastic model for tissue and have used experimental data from
a simple homogeneous gel phantom to test the ability of our model to describe wave
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Figure 3. Shear data fit using data sampled at 512 Hz, Np = 1,
weight 264 g. (left) OLS results. (right) GLS results.

propagation in the medium. The data were generated from a drop experiment de-
signed to produce oscillations in the gel of a magnitude comparable to that produced
by blood flow in a stenosed coronary artery impacting the vessel wall, a disturbance
which results in shear wave propagating away from the vessel walls downstream of
the blockage. In our inverse problem results as discussed in Section 4.2, we have
shown an ability to consistently model the wave propagation using different error
models and at different data sampling frequencies, obtaining good fits to data in
all of our inverse problems. In addition to a good fit, though, we also examined
statistical properties of the parameter estimators as well as residual plots to gain
more insight into the proper error model for the shear data set. This is necessary,
since a correct error model is essential in order to apply the asymptotic error theory
properly and thus obtain correct confidence intervals. We recommend taking the
more conservative route and using the GLS parameter estimates; even though the
GLS estimates had larger standard errors, there were indications from the residual
versus time plots for OLS that the OLS model is not correct. Overall, we have
successfully demonstrated the ability of mathematical model to accurately describe
the data from laboratory experiments using a homogenous tissue-mimicking ma-
terial gel phantom. A linear viscoelastic constitutive relationship, i.e., (14b), was
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adequate. This is a significant achievement, as all the work previously discussed
was limited to inverse problems on simulated data or data that was not from the
impulse-type experiments.

We do note that both the model and experiments that we studied here, though
quite useful as a starting point, are limited in replicating reality. Two different
paths are the likely next steps. First, we are currently examining a two-dimensional
model and corresponding experimental configurations. Experiments are currently in
progress to produce a two-dimensional wave from different points in the medium and
with different detection points along the outer wall of the phantom. It is conceivable
that the one-dimensional parameters could be used as a rough first approximation
in a corresponding two-dimensional code, which would allow us to focus on trying to
determine the location of the wave generation in the medium. Also, these parameter
values could be used in a model of wave propagation in another conceptual device
designed to mimic a constricted artery and the waves that result from passing
fluid through a constricted pipe in the center of the medium. Therefore in the
slightly longer term, we will also likely need to conduct an inverse problem using a
two-dimensional model and corresponding data. These one-dimensional results will
provide a starting point for parameters in that inverse problem, hopefully decreasing
runtime and the time it takes to find viable parameters. The same issues discussed
here (sensitivity to parameters, data frequency, number of relaxation times) will
again be of concern for the two-dimensional problem. Future efforts will also involve
scaling up all these experiments to larger phantoms and then to some sort of actual
tissue sample experiments.

Second, the work to this point has still been focused on the simplest problem,
that of a homogeneous medium. A clear next step would be adding inhomogeneous
features to the gel phantom to mimic different types of tissue in the chest cav-
ity. This would likely be formulated initially in the one-dimensional case, so that
we could study the model responses in a simpler framework before moving to the
more complicated two-dimensional case. We can increase the number of internal
variables to accommodate different material relaxation properties. The model also
allows changes to the material parameters; for example, we could use piecewise-
defined constants to represent different types of tissue. These two options represent
reasonable directions for the next stages of investigation.
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