169 research outputs found

    Parametric forcing approach to rough-wall turbulent channel flow

    No full text
    The effects of rough surfaces on turbulent channel flow are modelled by an extra force term in the Navier–Stokes equations. This force term contains two parameters, related to the density and the height of the roughness elements, and a shape function, which regulates the influence of the force term with respect to the distance from the channel wall. This permits a more flexible specification of a rough surface than a single parameter such as the equivalent sand grain roughness. The effects of the roughness force term on turbulent channel flow have been investigated for a large number of parameter combinations and several shape functions by direct numerical simulations. It is possible to cover the full spectrum of rough flows ranging from hydraulically smooth through transitionally rough to fully rough cases. By using different parameter combinations and shape functions, it is possible to match the effects of different types of rough surfaces. Mean flow and standard turbulence statistics have been used to compare the results to recent experimental and numerical studies and a good qualitative agreement has been found. Outer scaling is preserved for the streamwise velocity for both the mean profile as well as its mean square fluctuations in all but extremely rough cases. The structure of the turbulent flow shows a trend towards more isotropic turbulent states within the roughness layer. In extremely rough cases, spanwise structures emerge near the wall and the turbulent state resembles a mixing layer. A direct comparison with the study of Ashrafian, Andersson & Manhart (Intl J. Heat Fluid Flow, vol. 25, 2004, pp. 373–383) shows a good quantitative agreement of the mean flow and Reynolds stresses everywhere except in the immediate vicinity of the rough wall. The proposed roughness force term may be of benefit as a wall model for direct and large-eddy numerical simulations in cases where the exact details of the flow over a rough wall can be neglecte

    Direct numerical simulation of compressible turbulence in a counter-flow channel configuration

    Get PDF
    Counter-flow configurations, whereby two streams of fluid are brought together from opposite directions, are highly efficient mixers due to the high turbulence intensities that can be maintained. In this paper, a simplified version of the problem is introduced that is amenable to direct numerical simulation. The resulting turbulent flow problem is confined between two walls, with one non-zero mean velocity component varying in the space direction normal to the wall, corresponding to a simple shear flow. Compared to conventional channel flows, the mean flow is inflectional and the maximum turbulence intensity relative to the maximum mean velocity is nearly an order of magnitude higher. The numerical requirements and turbulence properties of this configuration are first determined. The Reynolds shear stress is required to vary linearly by the imposed forcing, with a peak at the channel centreline. A similar behaviour is observed for the streamwise Reynolds stress, the budget of which shows an approximately uniform distribution of dissipation, with large contributions from production, pressure-strain and turbulent diffusion. A viscous sublayer is obtained near the walls and with increasing Reynolds number small-scale streaks in the streamwise momentum are observed, superimposed on the large-scale structures that buffet this region. When the peak local mean Mach number reaches 0.55, turbulent Mach numbers of 0.6 are obtained, indicating that this flow configuration can be useful to study compressibility effects on turbulence

    Change in drag, apparent slip and optimum air layer thickness for laminar flow over an idealised superhydrophobic surface

    Get PDF
    Analytic results are derived for the apparent slip length, the change in drag and the optimum air layer thickness of laminar channel and pipe flow over an idealised superhydrophobic surface, i.e. a gas layer of constant thickness retained on a wall. For a simple Couette flow the gas layer always has a drag reducing effect, and the apparent slip length is positive, assuming that there is a favourable viscosity contrast between liquid and gas. In pressure-driven pipe and channel flow blockage limits the drag reduction caused by the lubricating effects of the gas layer; thus an optimum gas layer thickness can be derived. The values for the change in drag and the apparent slip length are strongly affected by the assumptions made for the flow in the gas phase. The standard assumptions of a constant shear rate in the gas layer or an equal pressure gradient in the gas layer and liquid layer give considerably higher values for the drag reduction and the apparent slip length than an alternative assumption of a vanishing mass flow rate in the gas layer. Similarly, a minimum viscosity contrast of four must be exceeded to achieve drag reduction under the zero mass flow rate assumption whereas the drag can be reduced for a viscosity contrast greater than unity under the conventional assumptions. Thus, traditional formulae from lubrication theory lead to an overestimation of the optimum slip length and drag reduction when applied to superhydrophobic surfaces, where the gas is trapped

    Male reproductive aging arises via multifaceted mating-dependent sperm and seminal proteome declines, but is postponable in Drosophila

    Get PDF
    I.S. and S.W. were supported by a Biotechnology and Biological Sciences Research Council (BBSRC) Fellowship to S.W. (BB/K014544/1) and S.W. additionally by a Dresden Senior Fellowship. B.M.K., P.D.C., and R.F. were supported by the Kennedy Trust and John Fell Funds. R.D. was supported by Marie Curie Actions (Grant 655392). B.R.H. was funded by the EP Abraham Cephalosporin-Oxford Graduate Scholarship with additional support from the BBSRC Doctoral Training Programme. M.F.W. was supported by a NIH Grant R01HD038921. Work in the J.S. Laboratory was supported by NIH Grant R15HD080511.Declining ejaculate performance with male age is taxonomically widespread and has broad fitness consequences. Ejaculate success requires fully functional germline (sperm) and soma (seminal fluid) components. However, some aging theories predict that resources should be preferentially diverted to the germline at the expense of the soma, suggesting differential impacts of aging on sperm and seminal fluid and trade-offs between them or, more broadly, be-tween reproduction and lifespan. While harmful effects of male age on sperm are well known, we do not know how much seminal fluid deteriorates in comparison. Moreover, given the predicted trade-offs, it remains unclear whether systemic lifespan-extending inter-ventions could ameliorate the declining performance of the ejacu-late as a whole. Here, we address these problems using Drosophila melanogaster. We demonstrate that seminal fluid deterioration con-tributes to male reproductive decline via mating-dependent mech-anisms that include posttranslational modifications to seminal proteins and altered seminal proteome composition and transfer. Additionally, we find that sperm production declines chronologically with age, invariant to mating activity such that older multiply mated males become infertile principally via reduced sperm transfer and viability. Our data, therefore, support the idea that both germline and soma components of the ejaculate contribute to male reproduc-tive aging but reveal a mismatch in their aging patterns. Our data do not generally support the idea that the germline is prioritized over soma, at least, within the ejaculate. Moreover, we find that lifespan-extending systemic down-regulation of insulin signaling re-sults in improved late-life ejaculate performance, indicating simul-taneous amelioration of both somatic and reproductive aging.Publisher PDFPeer reviewe

    The Effect of Pulmonary Artery Catheter Use on Costs and Long-Term Outcomes of Acute Lung Injury

    Get PDF
    Background: The pulmonary artery catheter (PAC) remains widely used in acute lung injury (ALI) despite known complications and little evidence of improved short-term mortality. Concurrent with NHLBI ARDS Clinical Trials Network Fluid and Catheters Treatment Trial (FACTT), we conducted a prospectively-defined comparison of healthcare costs and long-term outcomes for care with a PAC vs. central venous catheter (CVC). We explored if use of the PAC in ALI is justified by a beneficial cost-effectiveness profile. Methods: We obtained detailed bills for the initial hospitalization. We interviewed survivors using the Health Utilities Index Mark 2 questionnaire at 2, 6, 9 and 12 m to determine quality of life (QOL) and post-discharge resource use. Outcomes beyond 12 m were estimated from federal databases. Incremental costs and outcomes were generated using MonteCarlo simulation. Results: Of 1001 subjects enrolled in FACTT, 774 (86%) were eligible for long-term follow-up and 655 (85%) consented. Hospital costs were similar for the PAC and CVC groups (96.8kvs.96.8k vs. 89.2k, p = 0.38). Post-discharge to 12 m costs were higher for PAC subjects (61.1kvs.45.4k,p=0.03).OneyearmortalityandQOLamongsurvivorsweresimilarinPACandCVCgroups(mortality:35.661.1k vs. 45.4k, p = 0.03). One-year mortality and QOL among survivors were similar in PAC and CVC groups (mortality: 35.6% vs. 31.9%, p = 0.33; QOL [scale: 0-1]: 0.61 vs. 0.66, p = 0.49). MonteCarlo simulation showed PAC use had a 75.2% probability of being more expensive and less effective (mean cost increase of 14.4k and mean loss of 0.3 quality-adjusted life years (QALYs)) and a 94.2% probability of being higher than the $100k/QALY willingness-to-pay threshold. Conclusion: PAC use increased costs with no patient benefit and thus appears unjustified for routine use in ALI. Trial Registration: www.clinicaltrials.gov NCT00234767. © 2011 Clermont et al

    Large-Scale Streamwise Vortices in Turbulent Channel Flow Induced by Active Wall Actuations

    Get PDF
    © 2017, Springer Science+Business Media B.V., part of Springer Nature. Direct numerical simulations of turbulent flow in a plane channel using spanwise alternatively distributed strips (SADS) are performed to investigate the characteristics of large-scale streamwise vortices (LSSVs) induced by small-scale active wall actuations, and their role in suppressing flow separation. SADS control is obtained by alternatively applying out-of-phase control (OPC) and in-phase control (IPC) to the wall-normal velocity component of the lower channel wall, in the spanwise direction. Besides the non-controlled channel flow simulated as a reference, four controlled cases with 1, 2, 3 and 4 pairs of OPC/IPC strips are studied at M = 0.2 and Re = 6,000, based on the bulk velocity and the channel half height. The case with 2 pairs of strips, whose width is Δz+ = 264 based on the friction velocity of the non-controlled case, is the most effective in terms of generating large-scale motions. It is also found that the OPC (resp. IPC) strips suppress (resp. enhance) the coherent structures and that leads to the creation of a vertical shear layer, which is responsible for the LSSVs presence. They are in a statistically steady state and their cores are located between two neighbouring OPC and IPC strips. These motions contribute significantly to the momentum transport in the wall-normal and spanwise directions showing potential for flow separation suppression

    Analysis of data on the relation between eddies and streaky structures in turbulent flows using the placebo method

    Full text link
    An artificially synthesized velocity field with known properties is used as a test data set in analyzing and interpreting the turbulent flow velocity fields. The objective nature of this approach is utilized for studying the relation between streaky and eddy structures. An analysis shows that this relation may be less significant than is customarily supposed

    Identifying Low pH Active and Lactate-Utilizing Taxa within Oral Microbiome Communities from Healthy Children Using Stable Isotope Probing Techniques

    Get PDF
    <div><h3>Background</h3><p>Many human microbial infectious diseases including dental caries are polymicrobial in nature. How these complex multi-species communities evolve from a healthy to a diseased state is not well understood. Although many health- or disease-associated oral bacteria have been characterized <em>in vitro</em>, their physiology within the complex oral microbiome is difficult to determine with current approaches. In addition, about half of these species remain uncultivated to date with little known besides their 16S rRNA sequence. Lacking culture-based physiological analyses, the functional roles of uncultivated species will remain enigmatic despite their apparent disease correlation. To start addressing these knowledge gaps, we applied a combination of Magnetic Resonance Spectroscopy (MRS) with RNA and DNA based Stable Isotope Probing (SIP) to oral plaque communities from healthy children for <em>in vitro</em> temporal monitoring of metabolites and identification of metabolically active and inactive bacterial species.</p> <h3>Methodology/Principal Findings</h3><p>Supragingival plaque samples from caries-free children incubated with <sup>13</sup>C-substrates under imposed healthy (buffered, pH 7) and diseased states (pH 5.5 and pH 4.5) produced lactate as the dominant organic acid from glucose metabolism. Rapid lactate utilization upon glucose depletion was observed under pH 7 conditions. SIP analyses revealed a number of genera containing cultured and uncultivated taxa with metabolic capabilities at pH 5.5. The diversity of active species decreased significantly at pH 4.5 and was dominated by <em>Lactobacillus</em> and <em>Propionibacterium</em> species, both of which have been previously found within carious lesions from children.</p> <h3>Conclusions/Significance</h3><p>Our approach allowed for identification of species that metabolize carbohydrates under different pH conditions and supports the importance of Lactobacilli and Propionibacterium in the development of childhood caries. Identification of species within healthy subjects that are active at low pH can lead to a better understanding of oral caries onset and generate appropriate targets for preventative measures in the early stages.</p> </div

    Tooth transposition prevalence and type among sub-Saharan Africans

    Get PDF
    Objectives: Although rare, tooth transposition—an exchange in location of two teeth—is a frequent topic of study. Clinical and, to a much lesser extent, dental anthropological research have focused predominantly on prevalence (0.03%‐0.74% in several world populations) and case studies, albeit on a restricted spatiotemporal scale. Many regions have received little attention, including sub‐Saharan Africa, while premodern data are few. Here, the aim is to supplement both fields of dental research by reviewing previous publications, and newly reporting transposition rates, types, and co‐occurring abnormalities in time‐successive samples across the subcontinent. Methods: Dental data in 51 sub‐Saharan samples (>2500 individuals) dating >10 000 BC to 20th century were recorded. Of these, 36 are of modern and 15 premodern age, comprising males and females ≥12‐years of age. Transposition presence, quadrant, and type were tabulated, cases described, and prevalence presented. In the latter case, Poisson 95% confidence intervals were calculated to better discern true population rates at various geographic levels. Results: Overall, six of 1886 modern individuals (0.32%) and one of premodern age evidence Mx.C.P1, an exchange of the maxillary canine and first premolar. Various associated dental abnormalities are also evident, including retained deciduous teeth, reduced permanent crowns, and agenesis. Conclusions: This study provides additional insight into the geographic distribution, features, and time depth of transposition, along with hints supporting a genetic etiology and, potentially, some indications of diachronic change from an initial Mx.C.P1 to several types more recently based on premodern evidence. It is of clinical concern today, but is not just a modern anomaly
    corecore