202 research outputs found
N-acetylhistidine, a novel osmolyte in the lens of Atlantic salmon (Salmo salar L.)
Volume homeostasis is essential for the preservation of lens transparency and this is of particular significance to anadromous fish species where migration from freshwater to seawater presents severe osmotic challenges. In Atlantic salmon (Salmo salar L.), aqueous humor (AH) osmolality is greater in fish acclimated to seawater compared with young freshwater fish, and levels of lens N-acetylhistidine (NAH) are much higher in seawater fish. Here we investigate NAH as an osmolyte in the lenses of salmon receiving diets either with or without histidine supplementation. In the histidine-supplemented diet (HD) histidine content was 14.2 g/kg, and in the control diet (CD) histidine content was 8.9 g/kg. A transient increase in AH osmolality of 20 mmol/kg was observed in fish transferred from freshwater to seawater. In a lens culture model, temporary decreases in volume and transparency were observed when lenses were exposed to hyperosmotic conditions. A positive linear relationship between extracellular osmolality and lens NAH content was also observed, whereas there was no change in lens histidine content. Hypoosmotic exposure stimulated [14C]-histidine efflux by 9.2- and 2.6-fold in CD and HD lenses, respectively. NAH efflux, measured by HPLC, was stimulated by hypoosmotic exposure to a much greater extent in HD lenses. In vivo, lens NAH increased in response to elevated AH osmolality in HD but not CD fish. In conclusion, NAH has an important and novel role as a compatible osmolyte in salmon lens. Furthermore, it is the major osmolyte that balances increases in AH osmolality in NAH would lead to a dysfunction of the normal osmoregulatory processes in the lens, and we propose that this would contribute to cataract formation in fish deficient in histidine
Hypoxia-inducible factor-1 (HIF-1) pathway activation by quercetin in human lens epithelial cells
Quercetin is a dietary bioflavonoid which has been shown to inhibit lens opacification in a number of models of cataract. The objectives of this study were to determine gene expression changes in human lens epithelial cells in response to quercetin and to investigate in detail the mechanisms underlying the responses. FHL-124 cells were treated with quercetin (10 ”M) and changes in gene expression were measured by microarray. It was found that 65% of the genes with increased expression were regulated by the hypoxia-inducible factor-1 (HIF-1) pathway. Quercetin (10 and 30 ”M) induced a time-dependent increase in HIF-1a protein levels. Quercetin (30 ”M) was also responsible for a rapid and long-lasting translocation of HIF-1a from the cytoplasm to the nucleus. Activation of HIF-1 signaling by quercetin was confirmed by qRTâPCR which showed upregulation of the HIF-1 regulated genes EPO, VEGF, PGK1 and BNIP3. Analysis of medium taken from FHL-124 cells showed a sustained dose-dependent increase in VEGF secretion following quercetin treatment. The quercetin-induced increase and nuclear translocation of HIF-1a was reversed by addition of excess iron (100 ”M). These results demonstrate that quercetin activates the HIF-1 signaling pathway in human lens epithelial cells
High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease.
BACKGROUND: The gut microbiota is thought to play a key role in the development of the inflammatory bowel diseases Crohn's disease (CD) and ulcerative colitis (UC). Shifts in the composition of resident bacteria have been postulated to drive the chronic inflammation seen in both diseases (the "dysbiosis" hypothesis). We therefore specifically sought to compare the mucosa-associated microbiota from both inflamed and non-inflamed sites of the colon in CD and UC patients to that from non-IBD controls and to detect disease-specific profiles. RESULTS: Paired mucosal biopsies of inflamed and non-inflamed intestinal tissue from 6 CD (n = 12) and 6 UC (n = 12) patients were compared to biopsies from 5 healthy controls (n = 5) by in-depth sequencing of over 10,000 near full-length bacterial 16S rRNA genes. The results indicate that mucosal microbial diversity is reduced in IBD, particularly in CD, and that the species composition is disturbed. Firmicutes were reduced in IBD samples and there were concurrent increases in Bacteroidetes, and in CD only, Enterobacteriaceae. There were also significant differences in microbial community structure between inflamed and non-inflamed mucosal sites. However, these differences varied greatly between individuals, meaning there was no obvious bacterial signature that was positively associated with the inflamed gut. CONCLUSIONS: These results may support the hypothesis that the overall dysbiosis observed in inflammatory bowel disease patients relative to non-IBD controls might to some extent be a result of the disturbed gut environment rather than the direct cause of disease. Nonetheless, the observed shifts in microbiota composition may be important factors in disease maintenance and severity
Expression and characterization of a recombinant cysteine proteinase of Leishmania mexicana
A major cysteine proteinase (CPB) of Leishmania mexicana, that is predominantly expressed in the form of the parasite that causes disease in mammals, has been overexpressed in Escherichia coli and purified from inclusion bodies to apparent homogeneity. the CPB enzyme, CPB2.8, was expressed as an inactive pro-form lacking the characteristic C-terminal extension (CPB2.8 Delta CTE). Pro-region processing was initiated during protein refolding and proceeded through several intermediate stages. Maximum enzyme activity accompanied removal of the entire pro-region. This was facilitated by acidification. Purified mature enzyme gave a single band on SDS/PAGE and gelatin SDS/PAGE gels, co-migrated with native enzyme in L. mexicana lysates, and had the same N-terminal sequence as the native enzyme. the procedure yielded > 3.5 mg of active enzyme per litre of E. coli culture.Univ Glasgow, Inst Biomed & Life Sci, Div Infect & Immun, Glasgow G12 8QQ, Lanark, ScotlandUniv Glasgow, Wellcome Ctr Mol Parasitol, Glasgow G11 6NU, Lanark, ScotlandCarlsberg Lab, Dept Chem, DK-2500 Copenhagen, DenmarkEscola Paulista Med, Dept Biophys, BR-04034 SĂŁo Paulo, BrazilEscola Paulista Med, Dept Biophys, BR-04034 SĂŁo Paulo, BrazilWeb of Scienc
Increased SK3 expression in DM1 lens cells leads to impaired growth through a greater calcium-induced fragility
Although cataract is a characteristic feature of myotonic dystrophy type 1 (DM1), little is known of the underlying mechanisms. We generated four lens epithelial cell lines derived from DM1 cataracts and two from age-matched, non-DM cataracts. Small-pool PCR revealed typical large triplet repeat expansions in the DM1 cells. Furthermore, real-time PCR analysis showed reduced SIX5 expression and increased expression of the Ca2+-activated K+ channel SK3 in the DM1 cells. These cells also exhibited longer population doubling times which did not arise through reduced proliferation, but rather increased cell death as shown by increased release of lactate dehydrogenase (LDH). Using 86Rb+ as a tracer for K+, we found no difference in the resting K+ influx or efflux kinetics. In all cases, the ouabain sensitive component of the influx contributed ~50% of the total. However, stimulating internal Ca2+ by exposure to ionomycin not only caused greater stimulation of K+ (86Rb) efflux in the DM1 cells but also induced a higher rate of cell death (LDH assay). Since both the hyper-stimulation of K+ efflux and cell death were reduced by the highly specific SK inhibitor apamin, we suggest that increased expression of SK3 has a critical role in the increased Ca2+-induced fragility in DM1 cells. The present data, therefore, both help explain the lower epithelial cell density previously observed in DM1 cataracts and provide general insights into mechanisms underlying the fragility of other DM1-affected tissues
Effect of plant-based feed ingredients on osmoregulation in the Atlantic salmon lens
Lenses of adult Atlantic salmon fed with a plant oil and plant protein-based diet (plant diet) were compared to lenses of fish fed a diet based on traditional marine ingredients (marine diet) with respect to biochemical composition and functionality ex vivo. After 12 months of feeding, plant diet-fed fish had smaller lenses with higher water contents and lower concentrations of histidine (His) and N-acetylhistidine (NAH) than fish fed with the marine diet. Cataract development in both dietary groups was minimal and no differences between the groups were observed. Lens fatty acid and lipid class composition differed minimally, although a significant increase in linoleic acid was observed. The lenses were examined for their ability to withstand osmotic disturbances ex vivo. Culture in hypoosmotic and hyperosmotic media led to increase and decrease of lens volume, respectively. Lenses from plant diet-fed fish were less resistant to swelling and shrinking, released less NAH into the culture medium, and accumulated His and NAH at higher rates than lenses from marine diet-fed fish. Culture in hypoosmotic medium resulted in higher cataract scores than in control and hyperosmotic medium. mRNA expression of selected genes, including glutathione peroxidase 4 and SPARC (secreted protein acidic and rich in cysteine), was affected by diet and osmotic treatment. It can be concluded that lenses of farmed Atlantic salmon are affected by the diet composition, both in biochemical composition and physiological functionality in relation to osmoregulation
Modification of an aggressive model of Alport Syndrome reveals early differences in disease pathogenesis due to genetic background
The link between mutations in collagen genes and the development of Alport Syndrome has been clearly established and a number of animal models, including knock-out mouse lines, have been developed that mirror disease observed in patients. However, it is clear from both patients and animal models that the progression of disease can vary greatly and can be modifed genetically. We have identifed a point mutation in Col4a4 in mice where disease is modifed by strain background, providing further evidence of the genetic modifcation of disease symptoms. Our results indicate that C57BL/6J is a protective background and postpones end stage renal failure from 7 weeks, as seen on a C3H background, to several months. We have identifed early diferences in disease progression, including expression of podocyte-specifc genes and podocyte morphology. In C57BL/6J mice podocyte efacement is delayed, prolonging normal renal function. The slower disease progression has allowed us to begin dissecting the pathogenesis of murine Alport Syndrome in detail. We fnd that there is evidence of diferential gene expression during disease on the two genetic backgrounds, and that disease diverges by 4 weeks of age. We also show that an infammatory response with increasing MCP-1 and KIM-1 levels precedes loss of renal function
Reduced CD27-IgD- B cells in blood and raised CD27-IgD- B cells in gut-associated lymphoid tissue in inflammatory bowel disease.
The intestinal mucosa in inflammatory bowel disease (IBD) contains increased frequencies of lymphocytes and a disproportionate increase in plasma cells secreting immunoglobulin (Ig)G relative to other isotypes compared to healthy controls. Despite consistent evidence of B lineage cells in the mucosa in IBD, little is known of B cell recruitment to the gut in IBD. Here we analyzed B cells in blood of patients with Crohn's disease (CD) and ulcerative colitis (UC) with a range of disease activities. We analyzed the frequencies of known B cell subsets in blood and observed a consistent reduction in the proportion of CD27âIgDâ B cells expressing all Ig isotypes in the blood in IBD (independent of severity of disease and treatment) compared to healthy controls. Successful treatment of patients with biologic therapies did not change the profile of B cell subsets in blood. By mass cytometry we demonstrated that CD27âIgDâ B cells were proportionately enriched in the gut-associated lymphoid tissue (GALT) in IBD. Since production of TNFα is a feature of IBD relevant to therapies, we sought to determine whether B cells in GALT or the CD27âIgDâ subset in particular could contribute to pathology by secretion of TNFα or IL-10. We found that donor matched GALT and blood B cells are capable of producing TNFα as well as IL-10, but we saw no evidence that CD27âIgDâ B cells from blood expressed more TNFα compared to other subsets. The reduced proportion of CD27âIgDâ B cells in blood and the increased proportion in the gut implies that CD27âIgDâ B cells are recruited from the blood to the gut in IBD. CD27âIgDâ B cells have been implicated in immune responses to intestinal bacteria and recruitment to GALT, and may contribute to the intestinal inflammatory milieu in IBD
Genetic and Inflammatory Biomarkers Classify Small Intestine Inflammation in Asymptomatic First-degree Relatives of Patients With Crohn's Disease
BACKGROUND & AIMS: Relatives of individuals with Crohn's disease (CD) carry CD-associated genetic variants and are often exposed to environmental factors that increase their risk for this disease. We aimed to estimate the utility of genotype, smoking status, family history, and other biomarkers can be used to calculate risk in asymptomatic first-degree relatives of patients with CD.METHODS: We recruited 480 healthy first-degree relatives (full siblings, offspring or parents) of patients with CD through the Guy's and St Thomas' NHS Foundation Trust and from members of Crohn's and Colitis, United Kingdom. DNA samples were genotyped using the Immunochip. We calculated a risk score for 454 participants, based on 72 genetic variants associated with CD, family history, and smoking history. Participants were assigned to highest and lowest risk score quartiles. We assessed pre-symptomatic inflammation by capsule endoscopy and measured 22 markers of inflammation in stool and serum samples (reference standard). Two machine-learning classifiers (elastic net and random forest) were used to assess the ability of the risk factors and biomarkers to identify participants with small intestinal inflammation in the same dataset.RESULTS: The machine-learning classifiers identified participants with pre-symptomatic intestinal inflammation: elastic net (area under the curve, 0.80; 95% CI, 0.62-0.98) and random forest (area under the curve, 0.87; 95% CI, 0.75-1.00). The elastic net method identified 3 variables that can be used to calculate odds for intestinal inflammation: combined family history of CD (odds ratio, 1.31), genetic risk score (odds ratio, 1.14), and fecal level of calprotectin (odds ratio, 1.04). These same 3 variables were among the 5 factors associated with intestinal inflammation in the random forest model.CONCLUSION: Using machine learning classifiers, we found that genetic variants associated with CD, family history, and fecal level of calprotectin together identify individuals with pre-symptomatic intestinal inflammation who are therefore at risk for CD. A tool for detecting people at risk for CD before they develop symptoms would help identify the individuals most likely to benefit from early intervention.</p
Hydrostatic pressure does not cause detectable changes to survival of human retinal ganglion
Purpose: Elevated intraocular pressure (IOP) is a major risk factor for glaucoma. One consequence of raised IOP is that ocular tissues are subjected to increased hydrostatic pressure (HP). The effect of raised HP on stress pathway signaling and retinal ganglion cell (RGC) survival in the human retina was investigated. Methods: A chamber was designed to expose cells to increased HP (constant and fluctuating). Accurate pressure control (10-100mmHg) was achieved using mass flow controllers. Human organotypic retinal cultures (HORCs) from donor eyes (<24h post mortem) were cultured in serum-free DMEM/HamF12. Increased HP was compared to simulated ischemia (oxygen glucose deprivation, OGD). Cell death and apoptosis were measured by LDH and TUNEL assays, RGC marker expression by qRT-PCR (THY-1) and RGC number by immunohistochemistry (NeuN). Activated p38 and JNK were detected by Western blot. Results: Exposure of HORCs to constant (60mmHg) or fluctuating (10-100mmHg; 1 cycle/min) pressure for 24 or 48h caused no loss of structural integrity, LDH release, decrease in RGC marker expression (THY-1) or loss of RGCs compared with controls. In addition, there was no increase in TUNEL-positive NeuN-labelled cells at either time-point indicating no increase in apoptosis of RGCs. OGD increased apoptosis, reduced RGC marker expression and RGC number and caused elevated LDH release at 24h. p38 and JNK phosphorylation remained unchanged in HORCs exposed to fluctuating pressure (10-100mmHg; 1 cycle/min) for 15, 30, 60 and 90min durations, whereas OGD (3h) increased activation of p38 and JNK, remaining elevated for 90min post-OGD. Conclusions: Directly applied HP had no detectable impact on RGC survival and stress-signalling in HORCs. Simulated ischemia, however, activated stress pathways and caused RGC death. These results show that direct HP does not cause degeneration of RGCs in the ex vivo human retina
- âŠ