84 research outputs found

    Dip in the gene pool: metagenomic survey of natural coccolithovirus communities

    Get PDF
    Despite the global oceanic distribution and recognised biogeochemical impact of coccolithoviruses (EhV), their diversity remains poorly understood. Here we employed a metagenomic approach to study the occurrence and progression of natural EhV community genomic variability. Analysis of EhV metagenomes from the early and late stages of an induced bloom led to three main discoveries. First, we observed resilient and specific genomic signatures in the EhV community associated with the Norwegian coast, which reinforce the existence of limitations to the capacity of dispersal and genomic exchange among EhV populations. Second, we identified a hyper-variable region (approximately 21kbp long) in the coccolithovirus genome. Third, we observed a clear trend for EhV relative amino-acid diversity to reduce from early to late stages of the bloom. This study validated two new methodological combinations, and proved very useful in the discovery of new genomic features associated with coccolithovirus natural communities

    Host-Associated and Free-Living Phage Communities Differ Profoundly in Phylogenetic Composition

    Get PDF
    Phylogenetic profiling has been widely used for comparing bacterial communities, but has so far been impossible to apply to viruses because of the lack of a single marker gene analogous to 16S rRNA. Here we developed a reference tree approach for matching viral sequences and applied it to the largest viral datasets available. The resulting technique, Shotgun UniFrac, was used to compare host-associated and non-host-associated phage communities (130 total metagenomes), and revealed a profound split similar to that found with bacterial communities. This new informatics approach complements analysis of bacterial communities and promises to provide new insights into viral community dynamics, such as top-down versus bottom-up control of bacterial communities by viruses in a range of systems

    Finding a Needle in the Virus Metagenome Haystack - Micro-Metagenome Analysis Captures a Snapshot of the Diversity of a Bacteriophage Armoire

    Get PDF
    Viruses are ubiquitous in the oceans and critical components of marine microbial communities, regulating nutrient transfer to higher trophic levels or to the dissolved organic pool through lysis of host cells. Hydrothermal vent systems are oases of biological activity in the deep oceans, for which knowledge of biodiversity and its impact on global ocean biogeochemical cycling is still in its infancy. In order to gain biological insight into viral communities present in hydrothermal vent systems, we developed a method based on deep-sequencing of pulsed field gel electrophoretic bands representing key viral fractions present in seawater within and surrounding a hydrothermal plume derived from Loki's Castle vent field at the Arctic Mid-Ocean Ridge. The reduction in virus community complexity afforded by this novel approach enabled the near-complete reconstruction of a lambda-like phage genome from the virus fraction of the plume. Phylogenetic examination of distinct gene regions in this lambdoid phage genome unveiled diversity at loci encoding superinfection exclusion- and integrase-like proteins. This suggests the importance of fine-tuning lyosgenic conversion as a viral survival strategy, and provides insights into the nature of host-virus and virus-virus interactions, within hydrothermal plumes. By reducing the complexity of the viral community through targeted sequencing of prominent dsDNA viral fractions, this method has selectively mimicked virus dominance approaching that hitherto achieved only through culturing, thus enabling bioinformatic analysis to locate a lambdoid viral “needle" within the greater viral community “haystack". Such targeted analyses have great potential for accelerating the extraction of biological knowledge from diverse and poorly understood environmental viral communities

    Human oral viruses are personal, persistent and gender-consistent.

    Get PDF
    Viruses are the most abundant members of the human oral microbiome, yet relatively little is known about their biodiversity in humans. To improve our understanding of the DNA viruses that inhabit the human oral cavity, we examined saliva from a cohort of eight unrelated subjects over a 60-day period. Each subject was examined at 11 time points to characterize longitudinal differences in human oral viruses. Our primary goals were to determine whether oral viruses were specific to individuals and whether viral genotypes persisted over time. We found a subset of homologous viral genotypes across all subjects and time points studied, suggesting that certain genotypes may be ubiquitous among healthy human subjects. We also found significant associations between viral genotypes and individual subjects, indicating that viruses are a highly personalized feature of the healthy human oral microbiome. Many of these oral viruses were not transient members of the oral ecosystem, as demonstrated by the persistence of certain viruses throughout the entire 60-day study period. As has previously been demonstrated for bacteria and fungi, membership in the oral viral community was significantly associated with the sex of each subject. Similar characteristics of personalized, sex-specific microflora could not be identified for oral bacterial communities based on 16S rRNA. Our findings that many viruses are stable and individual-specific members of the oral ecosystem suggest that viruses have an important role in the human oral ecosystem

    Characterization of Archaeal Community in Contaminated and Uncontaminated Surface Stream Sediments

    Get PDF
    Archaeal communities from mercury and uranium-contaminated freshwater stream sediments were characterized and compared to archaeal communities present in an uncontaminated stream located in the vicinity of Oak Ridge, TN, USA. The distribution of the Archaea was determined by pyrosequencing analysis of the V4 region of 16S rRNA amplified from 12 streambed surface sediments. Crenarchaeota comprised 76% of the 1,670 archaeal sequences and the remaining 24% were from Euryarchaeota. Phylogenetic analysis further classified the Crenarchaeota as a Freshwater Group, Miscellaneous Crenarchaeota group, Group I3, Rice Cluster VI and IV, Marine Group I and Marine Benthic Group B; and the Euryarchaeota into Methanomicrobiales, Methanosarcinales, Methanobacteriales, Rice Cluster III, Marine Benthic Group D, Deep Sea Hydrothermal Vent Euryarchaeota 1 and Eury 5. All groups were previously described. Both hydrogen- and acetate-dependent methanogens were found in all samples. Most of the groups (with 60% of the sequences) described in this study were not similar to any cultivated isolates, making it difficult to discern their function in the freshwater microbial community. A significant decrease in the number of sequences, as well as in the diversity of archaeal communities was found in the contaminated sites. The Marine Group I, including the ammonia oxidizer Nitrosopumilus maritimus, was the dominant group in both mercury and uranium/nitrate-contaminated sites. The uranium-contaminated site also contained a high concentration of nitrate, thus Marine Group I may play a role in nitrogen cycle

    Distribution of tetracycline resistance determinants among gram-negative bacteria isolated from polluted and unpolluted marine sediments.

    No full text
    Tetracycline-resistant gram-negative bacteria were isolated from four different marine sediments in Scandinavia and analyzed with DNA probes for the determinant classes A to E. Colony hybridizations of 429 isolates revealed that class E is the dominating resistance determinant in these marine sediments. Comparison of fecally polluted and unpolluted sediments showed few determinant classes in unpolluted sediment and a complex composition of several determinant classes in polluted sediment. Total DNA extraction and analysis with DNA probes for determinant classes A to E resulted in no hybridization signal, because of the low number of gram-negative tetracycline-resistant bacteria. Identification of class E isolates revealed that this determinant is present not only in Aeromonas hydrophila, Escherichia coli, and Vibrio salmonicida but also in additional strains

    Marine viral populations detected during a nutrient induced phytoplankton bloom at elevated pCO<sub>2</sub> levels

    No full text
    International audienceDuring the PEeCE III mesocosm experiment in 2005 we investigated how the virioplankton community responded to increased levels of nutrients (N and P) and CO2. We applied a combination of flow cytometry, Pulsed Field Gel Electrophoresis and degenerated PCR primers to categorize and quantify individual viral populations, and to investigate their temporal dynamics. Species specific and degenerated primers enabled us to identify two specific large dsDNA viruses, EhV and CeV, infecting the haptophytes Emiliania huxleyi and Crysochromulina ericina, respectively. Some of the viral populations detected and enumerated by flow cytometry did not respond to altered CO2-levels, but the abundance of EhV and an unidentified dsDNA virus decreased with increasing CO2 levels. Our results thus indicate that CO2 conditions may affect the marine pelagic food web at the viral level. Our results also demonstrate that in order to unravel ecological problems as how CO2 and nutrient levels affect the relationship between marine algal viruses and their hosts, we need to continue the effort to develop molecular markers used to identify both hosts and viruses

    Phylogenetic Analysis of Members of the Phycodnaviridae Virus Family, Using Amplified Fragments of the Major Capsid Protein Geneâ–¿

    No full text
    Algal viruses are considered ecologically important by affecting host population dynamics and nutrient flow in aquatic food webs. Members of the family Phycodnaviridae are also interesting due to their extraordinary genome size. Few algal viruses in the Phycodnaviridae family have been sequenced, and those that have been have few genes in common and low gene homology. It has hence been difficult to design general PCR primers that allow further studies of their ecology and diversity. In this study, we screened the nine type I core genes of the nucleocytoplasmic large DNA viruses for sequences suitable for designing a general set of primers. Sequence comparison between members of the Phycodnaviridae family, including three partly sequenced viruses infecting the prymnesiophyte Pyramimonas orientalis and the haptophytes Phaeocystis pouchetii and Chrysochromulina ericina (Pyramimonas orientalis virus 01B [PoV-01B], Phaeocystis pouchetii virus 01 [PpV-01], and Chrysochromulina ericina virus 01B [CeV-01B], respectively), revealed eight conserved regions in the major capsid protein (MCP). Two of these regions also showed conservation at the nucleotide level, and this allowed us to design degenerate PCR primers. The primers produced 347- to 518-bp amplicons when applied to lysates from algal viruses kept in culture and from natural viral communities. The aim of this work was to use the MCP as a proxy to infer phylogenetic relationships and genetic diversity among members of the Phycodnaviridae family and to determine the occurrence and diversity of this gene in natural viral communities. The results support the current legitimate genera in the Phycodnaviridae based on alga host species. However, while placing the mimivirus in close proximity to the type species, PBCV-1, of Phycodnaviridae along with the three new viruses assigned to the family (PoV-01B, PpV-01, and CeV-01B), the results also indicate that the coccolithoviruses and phaeoviruses are more diverged from this group. Phylogenetic analysis of amplicons from virus assemblages from Norwegian coastal waters as well as from isolated algal viruses revealed a cluster of viruses infecting members of the prymnesiophyte and prasinophyte alga divisions. Other distinct clusters were also identified, containing amplicons from this study as well as sequences retrieved from the Sargasso Sea metagenome. This shows that closely related sequences of this family are present at geographically distant locations within the marine environment
    • …
    corecore