102 research outputs found

    The effect of thermal annealing on the properties of Al-AlOx-Al single electron tunneling transistors

    Full text link
    The effect of thermal annealing on the properties of Al-AlOx-Al single electron tunneling transistors is reported. After treatment of the devices by annealing processes in forming gas atmosphere at different temperatures and for different times, distinct and reproducible changes of their resistance and capacitance values were found. According to the temperature regime, we observed different behaviors as regards the resistance changes, namely the tendency to decrease the resistance by annealing at T = 200 degree C, but to increase the resistance by annealing at T = 400 degree C. We attribute this behavior to changes in the aluminum oxide barriers of the tunnel junctions. The good reproducibility of these effects with respect to the changes observed allows the proper annealing treatment to be used for post-process tuning of tunnel junction parameters. Also, the influence of the annealing treatment on the noise properties of the transistors at low frequency was investigated. In no case did the noise figures in the 1/f-regime show significant changes.Comment: 6 pages, 7 eps-figure

    Soil food web assembly and vegetation development in a glacial chronosequence in Iceland

    Get PDF
    Worldwide human activities threaten soil quality in terms of the soil's ability to deliver ecosystem services. This ongoing process of land degradation asks for effective strategies of soil protection. In this context, it is important to understand processes that build up and regenerate soil. The present study investigated how the soil ecosystem, including soil organisms, vegetation and soil ecological processes, develops during the process of soil formation in a chronosequence in a glacier forefield in Iceland. We hypothesised that along successional age we see increases in nutrient content, vegetation cover, and plant species richness linked to increases in soil food webs biomass and complexity. In line with our expectations all measured pools of carbon and nitrogen, and vegetation cover increased with age in the glacial forefield, but plant species richness levelled off after 30 years. Soil organisms generally increased in biomass with successional age, although some of the groups of soil organisms peaked at an intermediate successional stage. In contrast to our expectations, some of the calculated food web complexity metrics such as the number of trophic groups and trophic chain length did not increase linearly, but showed an intermediate peak or even decreased with successional age. However, plant cover and pools of carbon and nitrogen still increased after 120 years. From these results we conclude that soil ecosystem development takes more than a century under Icelandic climatic conditions to fully develop in terms of vegetation succession, food web structure and biogeochemical cycling.</p

    Marginalization of end-use technologies in energy innovation for climate protection

    Get PDF
    Mitigating climate change requires directed innovation efforts to develop and deploy energy technologies. Innovation activities are directed towards the outcome of climate protection by public institutions, policies and resources that in turn shape market behaviour. We analyse diverse indicators of activity throughout the innovation system to assess these efforts. We find efficient end-use technologies contribute large potential emission reductions and provide higher social returns on investment than energy-supply technologies. Yet public institutions, policies and financial resources pervasively privilege energy-supply technologies. Directed innovation efforts are strikingly misaligned with the needs of an emissions-constrained world. Significantly greater effort is needed to develop the full potential of efficient end-use technologies

    Stomach cancer and occupational exposure to asbestos: a meta-analysis of occupational cohort studies

    Get PDF
    BACKGROUND: A recent Monographs Working Group of the International Agency for Research on Cancer concluded that there is limited evidence for a causal association between exposure to asbestos and stomach cancer. METHODS: We performed a meta-analysis to quantitatively evaluate this association. Random effects models were used to summarise the relative risks across studies. Sources of heterogeneity were explored through subgroup analyses and meta-regression. RESULTS: We identified 40 mortality cohort studies from 37 separate papers, and cancer incidence data were extracted for 15 separate cohorts from 14 papers. The overall meta-SMR for stomach cancer for total cohort was 1.15 (95% confidence interval 1.03–1.27), with heterogeneous results across studies. Statistically significant excesses were observed in North America and Australia but not in Europe, and for generic asbestos workers and insulators. Meta-SMRs were larger for cohorts reporting a SMR for lung cancer above 2 and cohort sizes below 1000. CONCLUSIONS: Our results support the conclusion by IARC that exposure to asbestos is associated with a moderate increased risk of stomach cancer

    An increased response to experimental muscle pain is related to psychological status in women with chronic non-traumatic neck-shoulder pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neck-shoulder pain conditions, e.g., chronic trapezius myalgia, have been associated with sensory disturbances such as increased sensitivity to experimentally induced pain. This study investigated pain sensitivity in terms of bilateral pressure pain thresholds over the trapezius and tibialis anterior muscles and pain responses after a unilateral hypertonic saline infusion into the right legs tibialis anterior muscle and related those parameters to intensity and area size of the clinical pain and to psychological factors (sleeping problems, depression, anxiety, catastrophizing and fear-avoidance).</p> <p>Methods</p> <p>Nineteen women with chronic non-traumatic neck-shoulder pain but without simultaneous anatomically widespread clinical pain (NSP) and 30 age-matched pain-free female control subjects (CON) participated in the study.</p> <p>Results</p> <p>NSP had lower pressure pain thresholds over the trapezius and over the tibialis anterior muscles and experienced hypertonic saline-evoked pain in the tibialis anterior muscle to be significantly more intense and locally more widespread than CON. More intense symptoms of anxiety and depression together with a higher disability level were associated with increased pain responses to experimental pain induction and a larger area size of the clinical neck-shoulder pain at its worst.</p> <p>Conclusion</p> <p>These results indicate that central mechanisms e.g., central sensitization and altered descending control, are involved in chronic neck-shoulder pain since sensory hypersensitivity was found in areas distant to the site of clinical pain. Psychological status was found to interact with the perception, intensity, duration and distribution of induced pain (hypertonic saline) together with the spreading of clinical pain. The duration and intensity of pain correlated negatively with pressure pain thresholds.</p

    Challenge clusters facing LCA in environmental decision-making—what we can learn from biofuels

    Get PDF
    Purpose Bioenergy is increasingly used to help meet greenhouse gas (GHG) and renewable energy targets. However, bioenergy’s sustainability has been questioned, resulting in increasing use of life cycle assessment (LCA). Bioenergy systems are global and complex, and market forces can result in significant changes, relevant to LCA and policy. The goal of this paper is to illustrate the complexities associated with LCA, with particular focus on bioenergy and associated policy development, so that its use can more effectively inform policymakers. Methods The review is based on the results from a series of workshops focused on bioenergy life cycle assessment. Expert submissions were compiled and categorized within the first two workshops. Over 100 issues emerged. Accounting for redundancies and close similarities in the list, this reduced to around 60 challenges, many of which are deeply interrelated. Some of these issues were then explored further at a policyfacing workshop in London, UK. The authors applied a rigorous approach to categorize the challenges identified to be at the intersection of biofuels/bioenergy LCA and policy. Results and discussion The credibility of LCA is core to its use in policy. Even LCAs that comply with ISO standards and policy and regulatory instruments leave a great deal of scope for interpretation and flexibility. Within the bioenergy sector, this has led to frustration and at times a lack of obvious direction. This paper identifies the main challenge clusters: overarching issues, application and practice and value and ethical judgments. Many of these are reflective of the transition from application of LCA to assess individual products or systems to the wider approach that is becoming more common. Uncertainty in impact assessment strongly influences planning and compliance due to challenges in assigning accountability, and communicating the inherent complexity and uncertainty within bioenergy is becoming of greater importance. Conclusions The emergence of LCA in bioenergy governance is particularly significant because other sectors are likely to transition to similar governance models. LCA is being stretched to accommodate complex and broad policy-relevant questions, seeking to incorporate externalities that have major implications for long-term sustainability. As policy increasingly relies on LCA, the strains placed on the methodology are becoming both clearer and impedimentary. The implications for energy policy, and in particular bioenergy, are large

    Low carbon technology performance vs infrastructure vulnerability: Analysis through the local and global properties space

    Get PDF
    Renewable energy technologies, necessary for low-carbon infrastructure networks, are being adopted to help reduce fossil fuel dependence and meet carbon mitigation targets. The evolution of these technologies has progressed based on the enhancement of technology-specific performance criteria, without explicitly considering the wider system (global) impacts. This paper presents a methodology for simultaneously assessing local (technology) and global (infrastructure) performance, allowing key technological interventions to be evaluated with respect to their effect on the vulnerability of wider infrastructure systems. We use exposure of low carbon infrastructure to critical material supply disruption (criticality) to demonstrate the methodology. A series of local performance changes are analyzed; and by extension of this approach, a method for assessing the combined criticality of multiple materials for one specific technology is proposed. Via a case study of wind turbines at both the material (magnets) and technology (turbine generators) levels, we demonstrate that analysis of a given intervention at different levels can lead to differing conclusions regarding the effect on vulnerability. Infrastructure design decisions should take a systemic approach; without these multilevel considerations, strategic goals aimed to help meet low-carbon targets, that is, through long-term infrastructure transitions, could be significantly jeopardized
    • …
    corecore