7 research outputs found

    Melanin-Concentrating Hormone acts through hypothalamic kappa opioid system and p70S6K to stimulate acute food intake.

    Get PDF
    Melanin-Concentrating Hormone (MCH) is one of the most relevant orexigenic factors specifically located in the lateral hypothalamic area (LHA), with its physiological relevance demonstrated in studies using several genetically manipulated mice models. However, the central mechanisms controlling MCH-induced hyperphagia remain largely uncharacterized. Here, we show that central injection of MCH in mice deficient for kappa opoid receptor (k-OR) failed to stimulate feeding. To determine the hypothalamic area responsible for this MCH/k-OR interaction, we performed virogenetic studies and found that downregulation of k-OR by adeno-associated viruses (shOprk1-AAV) in LHA, but not in other hypothalamic nuclei, was sufficient to block MCH-induced food intake. Next, we sought to investigate the molecular signaling pathway within the LHA that mediates acute central MCH stimulation of food intake. We found that MCH activates k-OR and that increased levels of phosphorylated extracellular signal regulated kinase (ERK) are associated with downregulation of phospho-S6 Ribosomal Protein. This effect was prevented when a pharmacological inhibitor of k-OR was co-administered with MCH. Finally, the specific activation of the direct upstream regulator of S6 (p70S6K) in the LHA attenuated MCH-stimulated food consumption. Our results reveal that lateral hypothalamic k-OR system modulates the orexigenic action of MCH via the p70S6K/S6 pathway

    Remission of obesity and insulin resistance is not sufficient to restore mitochondrial homeostasis in visceral adipose tissue

    Get PDF
    Metabolic plasticity is the ability of a biological system to adapt its metabolic phenotype to different environmental stressors. We used a whole-body and tissue-specific phenotypic, functional, proteomic, metabolomic and transcriptomic approach to systematically assess metabolic plasticity in diet-induced obese mice after a combined nutritional and exercise intervention. Although most obesity and overnutrition-related pathological features were successfully reverted, we observed a high degree of metabolic dysfunction in visceral white adipose tissue, characterized by abnormal mitochondrial morphology and functionality. Despite two sequential therapeutic interventions and an apparent global healthy phenotype, obesity triggered a cascade of events in visceral adipose tissue progressing from mitochondrial metabolic and proteostatic alterations to widespread cellular stress, which compromises its biosynthetic and recycling capacity. In humans, weight loss after bariatric surgery showed a transcriptional signature in visceral adipose tissue similar to our mouse model of obesity reversion. Overall, our data indicate that obesity prompts a lasting metabolic fingerprint that leads to a progressive breakdown of metabolic plasticity in visceral adipose tissue

    Regulation of Chemerin and CMKLR1 Expression by Nutritional Status, Postnatal Development, and Gender

    No full text
    Chemerin (also known as tazarotene-induced gene 2 and retinoic acid receptor responder 2) has been identified as an adipokine that exerts effects on many biological processes, including adipogenesis, angiogenesis, inflammation, immune responses, and food intake. This variety of effects has led to its implication in obesity and co-morbidities including diabetes and a risk of cardiovascular disease. The biological effects are mostly mediated by a so-called G protein-coupled receptor, chemokine-like receptor 1 (CMKLR1). Given the association of chemerin with obesity and related diseases, we decided to study in detail the regulation of chemerin and CMKLR1 expression in white adipose tissue (WAT). Specifically, we focused on their expression levels in physiological and pathophysiological settings involved in energy balance: e.g., fasting, postnatal development, and gender. We used Sprague Dawley rats with different nutritional statuses, levels of hormonal deficiency, and states of development as well as ob/ob (leptin-deficient) mice. We analysed the protein expression of both the ligand and receptor (chemerin and CMKLR1) in gonadal WAT by western blotting. We found that chemerin and CMKLR1 protein levels were regulated in WAT by different conditions associated with metabolic changes such as nutritional status, sex steroids, pregnancy, and food composition. Our data indicate that regulation of the expression of this new adipokine and its receptor by nutritional status and gonadal hormones may be a part of the adaptive mechanisms related to altered fat mass and its metabolic complications

    Melanin-concentrating hormone acts through hypothalamic kappa opioid system and p70S6K to stimulate acute food intake

    No full text
    Melanin-Concentrating Hormone (MCH) is one of the most relevant orexigenic factors specifically located in the lateral hypothalamic area (LHA), with its physiological relevance demonstrated in studies using several genetically manipulated mice models. However, the central mechanisms controlling MCH-induced hyperphagia remain largely uncharacterized. Here, we show that central injection of MCH in mice deficient for kappa opoid receptor (k-OR) failed to stimulate feeding. To determine the hypothalamic area responsible for this MCH/k-OR interaction, we performed virogenetic studies and found that downregulation of k-OR by adeno-associated viruses (shOprk1-AAV) in LHA, but not in other hypothalamic nuclei, was sufficient to block MCH-induced food intake. Next, we sought to investigate the molecular signaling pathway within the LHA that mediates acute central MCH stimulation of food intake. We found that MCH activates k-OR and that increased levels of phosphorylated extracellular signal regulated kinase (ERK) are associated with downregulation of phospho-S6 Ribosomal Protein. This effect was prevented when a pharmacological inhibitor of k-OR was co-administered with MCH. Finally, the specific activation of the direct upstream regulator of S6 (p70S6K) in the LHA attenuated MCH-stimulated food consumption. Our results reveal that lateral hypothalamic k-OR system modulates the orexigenic action of MCH via the p70S6K/S6 pathway.This work has been supported by grants from Ministerio de Economia y Competitividad (CD: BFU2014-55871; RN: BFU2015-70664-R; ML: SAF2015-71026-R), Xunta de Galicia (ML: 2015- CP079; RN: 2015-CP080 and PIE13/00024); Fundacion SEEN (RN); Helse Vest RHF (JF); Fundación AstraZeneca (RN: 2016-PO031); Centro de Investigacion Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutricion (CIBERobn). CIBERobn is an initiative of the Instituto de Salud Carlos III (ISCIII) of Spain which is supported by FEDER funds. The research leading to these results has also received funding from the European Community's Seventh Framework Programme under the following grant: RN: ERC StG28140

    Hypothalamic kappa opioid receptor mediates both diet- and MCH-induced liver damage through inflammation and ER stress

    No full text
    The opioid system is widely known to modulate the brain reward system and thus affect human and animal behaviour, including feeding. We hypothesized that the hypothalamic opioid system might also control energy metabolism in peripheral tissues. Mice lacking the kappa opioid receptor (κOR) and adenoviral vectors over-expressing or silencing κOR were stereotaxically delivered in the lateral hypothalamic area (LHA) of rats. Vagal denervation was performed to assess its effect on liver metabolism. ER stress was inhibited by pharmacological (tauroursodeoxycholic acid - TUDCA) and genetic (over-expression of the chaperone glucose-regulated protein 78 kDa - GRP78) approaches. The peripheral effects on lipid metabolism were assessed by histological techniques and Western blot. We show that in the LHA, κOR directly controls hepatic lipid metabolism via the parasympathetic nervous system, independent of changes in food intake and body weight. κOR colocalizes with melanin concentrating hormone receptor (MCH-R1) in the LHA and genetic disruption of κOR reduced MCH-induced liver steatosis. The functional relevance of these findings was given by the fact that silencing of κOR in the LHA attenuated both methionine choline-deficient diet- and choline deficient-high fat diet-induced ER stress, inflammation, steatohepatitis and fibrosis, whereas over-expression of κOR in this area promoted liver steatosis. Over-expression of the GRP78 in the liver abolished hypothalamic κOR-induced steatosis by reducing hepatic ER stress. CONCLUSIONS: Overall, this study reveals a novel hypothalamic-parasympathetic circuit modulating hepatic function via inflammation and ER stress independent of changes in food intake or body weight. These findings might have implications for the clinical use of opioid receptor antagonists. This article is protected by copyright. All rights reserved

    p53 in AgRP neurons is required for protection against diet-induced obesity via JNK1.

    Get PDF
    p53 is a well-known tumor suppressor that has emerged as an important player in energy balance. However, its metabolic role in the hypothalamus remains unknown. Herein, we show that mice lacking p53 in agouti-related peptide (AgRP), but not proopiomelanocortin (POMC) or steroidogenic factor-1 (SF1) neurons, are more prone to develop diet-induced obesity and show reduced brown adipose tissue (BAT) thermogenic activity. AgRP-specific ablation of p53 resulted in increased hypothalamic c-Jun N-terminal kinase (JNK) activity before the mice developed obesity, and central inhibition of JNK reversed the obese phenotype of these mice. The overexpression of p53 in the ARC or specifically in AgRP neurons of obese mice decreased body weight and stimulated BAT thermogenesis, resulting in body weight loss. Finally, p53 in AgRP neurons regulates the ghrelin-induced food intake and body weight. Overall, our findings provide evidence that p53 in AgRP neurons is required for normal adaptations against diet-induced obesity
    corecore