
                             Elsevier Editorial System(tm) for 

Neuropharmacology 

                                  Manuscript Draft 

 

 

Manuscript Number: NEUROPHARM-D-17-00673R1 

 

Title: Melanin-Concentrating Hormone acts through hypothalamic kappa 

opioid system and p70S6K to stimulate acute food intake  

 

Article Type: Research Paper 

 

Keywords: Hypothalamus; Melanin-Concentrating Hormone; kappa-opioid 

receptor; food intake. 

 

 

Corresponding Author: Mrs. Amparo Romero, Ph.D. 

 

Corresponding Author's Institution: Center for Research in Molecular 

Medicine  and chronic Diseases 

 

First Author: Amparo Romero, Ph.D. 

 

Order of Authors: Amparo Romero, Ph.D.; Estrella Sanchez-Rebordelo, PhD 

student; Monica Imbernon, Postdoc; David  González-Touceda, PhD student; 

Cintia Folgueira, PhD student; Ana Senra; Johan Fernø; Clémence Blouet; 

Roberto Cabrera; Margriet van Gestel; Roger Adan; Miguel López, 

Professor; Rafael Maldonado; Ruben  Nogueiras, Professor; Carlos Diéguez, 

Professor 

 

Abstract: Melanin-Concentrating Hormone (MCH) is one of the most relevant 

orexigenic factors specifically located in the lateral hypothalamic area 

(LHA), with its physiological relevance demonstrated in studies using 

several genetically manipulated mice models. However, the central 

mechanisms controlling MCH-induced hyperphagia remain largely 

uncharacterized. Here, we show that central injection of MCH in mice 

deficient for kappa opoid receptor (k-OR) failed to stimulate feeding. To 

determine the hypothalamic area responsible for this MCH/k-OR 

interaction, we performed virogenetic studies and found that 

downregulation of k-OR by adeno-associated viruses (shOprk1-AAV) in LHA, 

but not in other hypothalamic nuclei, was sufficient to block MCH-induced 

food intake. Next, we sought to investigate the molecular signaling 

pathway within the LHA that mediates acute central MCH stimulation of 

food intake. We found that MCH activates k-OR and that increased levels 

of phosphorylated extracellular signal regulated kinase (ERK) are 

associated with downregulation of phospho-S6 Ribosomal Protein. This 

effect was prevented when a pharmacological inhibitor of k-OR was co-

administered with MCH. Finally, the specific activation of the direct 

upstream regulator of S6 (p70S6K) in the LHA attenuated MCH-stimulated 

food consumption. Our results reveal that lateral hypothalamic k-OR 

system modulates the orexigenic action of MCH via the p70S6K/S6 pathway. 
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Dear Editor, 

 

We will be grateful if the enclosed Ms entitled “Melanin-Concentrating Hormone 

acts through hypothalamic kappa opioid system and p70S6K to stimulate acute 

food intake” could be considered for publication as an Original Article at 

Neuropharmacology. 

 

We confirm that this work is original and has not been published elsewhere nor is it 

currently under consideration for publication elsewhere. 

 

All authors listed have contributed sufficiently to the project to be included as authors. 

To the best of our knowledge, no conflict of interest exists. We have included funding 

sources after the discussion. 

 

MCH is an orexigenic neuropeptide specifically located in the lateral hypothalamus that 

increases food intake and adiposity, having a strong impact in energy homeostasis. In 

the present study, by a combination of genetic and pharmacological approaches we 

uncover that its acute orexigenic effect is mediated via the k-OR system. In addition, we 

carry out some detailed mechanistic studies showing that the p70S6K/S6 signaling 

pathway in the lateral hypothalamic area (LHA) mediates MCH-induced feeding. More 

specifically, the highlights of our manuscript are: 

 

- Central MCH fails to stimulate food intake in k-OR-deficient mice. 

- Only k-OR specifically located in the LHA modulates MCH-induced feeding. 

- Central MCH activates k-OR in the LHA, and reduces phosphorylated levels of 

S6 ribosomal protein. This effect is blunted in rats pre-treated with a specific k-

OR antagonist. 

- The genetic activation of p70S6K in the LHA reduces MCH-induced feeding. 
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These findings are quite significant because despite the fact that the orexigenic effect of 

MCH has been reported almost two decades ago; the involved hypothalamic molecular 

pathways remain largely unknown. 

 

Sincerely yours,  

 

 

 

 

 

 

Ruben Nogueiras, PhD 



Reviewer 1: 
As acknowledged by the authors, the reduced hyperphagic effect of MCH led to by the 
knockdown of k-OR in the LH was less than that produced for the i.c.v. injection of k-
OR antagonists. They attributed the reduced effect to the possibility that a "lower 
number of neurons are affected by the virogenetic approach". This could be a valid 
explanation. However, the authors cannot exclude the possibility that the MCH action 
through the k-OR occur in regions other than the LH. Indeed, the nucleus Accumbens 
(NAc) appears as good target as the LH for the k-OR-mediated effects of MCH. MCH-
R1 is strongly expressed in the NAc and k-OR agonists are known to act in the NAc. 
 
REPLY:		
We	completely	agree	with	 the	 reviewer.	We	cannot	 rule	out	 the	possibility	of	extra-
hypothalamic	 MCH	 actions	 through	 the	 kappa	 opioid	 receptor	 system.	 Indeed,	 the	
possibility	 of	 this	 interaction	 in	 the	 NAc	 is	 quite	 feasible	 since	 the	MCHR1	 is	 highly	
expressed	 in	 this	 area.	 In	 fact,	 we	 plan	 to	 address	 this	 issue	 and	 its	 functional	
significance	in	the	future	but	feel	that	is	out	of	the	scope	of	the	current	manuscript.	In	
the	current	study,	we	have	focused	on	hypothalamic	MCH/k-OR	interaction	to	simplify	
the	complex	central	mechanisms	 involved	on	 food	 intake	regulation	considering	 that	
MCHR	 and	 kappa	 opioid	 receptor	 are	 widely	 expressed	 within	 the	 central	 nervous	
system.		
We	do	consider	 the	comment	 from	the	 reviewer	very	appropriate,	and	will	highlight	
this	issue	by	adding	the	following	sentence:		
	“Moreover,	we	cannot	rule	out	a	potential	extra-hypothalamic	MCH	action	through	k-
OR	system.	Indeed,	a	good	candidate	is	the	NAc	where	MCHR1	is	strongly	expressed.	
Further	studies	to	address	this	issue	are	clearly	merited”.	
 
Reviewer 2: 
I have a concern regarding the colocalization MCHR/KOR. This was done with 
antibodies which specificity needs to be proven. To have worked with commercial 
antibodies directed at GPCRs I can attest that the majority are not selective. I know of 
researchers who wanted to raise antisera to the MCHR and never found specificity. The 
authors need to test these antibodies and not only accept the data of the companies 
which established them. 
 
REPLY:	
We	share	the	reviewer’s	concerns	regarding	antibody	specificity	and	it	is	something	we	
critically	appraise	in	our	papers.	For	the	ones	used	in	this	manuscript	we	have	carried	
out	 different	 validation	 procedures	 to	 test	 their	 reliability.	 Some	 of	 the	 information	
related	to	this	issue	was	already	reported	in	previous	papers	(e.g.	see	Imbernon	et	al.,	
Gastroenterology,	2013,	and	Imbernon	et	al.,	Hepatology,	2016),	and	we	did	not	find	it	
appropriate	 to	 redo	 the	 experiments	 here.	 Nevertheless,	 please	 allow	 us	 to	
recapitulate	some	of	this	information	about	the	rabbit-MCHR	(Abnova	PAB16225)	and	
goat	anti-k-OR	(Sigma	SAB2501442)	antibodies.	
Regarding	 MCHR	 we	 first	 performed	 standard	 validation	 methods	 (with/without	
primary	antibodies)	that	exhibited	specific	hypothalamic	staining	as	shown	below:	
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This	specificity	was	further	validated	using	a	combination	of	genetic	knock-down	of	the	
receptor	and	WB.	When	we	knock-down	MCHR	by	shRNA-viral	particles	specifically	in	
the	 lateral	 Hypothalamic	 area	 (LHA),	 the	 protein	 expression	 of	 MCHR	 analyzed	 by	
western	 blot	 is	 significantly	 reduced	 as	 shown	 in	 the	 figure	 below	 (Figure	 2A	 from	
Imbernon	et	al.,	Hepatology,	2016):	

	
Similarly,	 in	 the	 present	 study,	 the	 genetic	 down-regulation	 of	 k-OR	 in	 specific	
hypothalamic	 areas	 (paraventricular	 nucleus,	 PVH	 and	 LHA)	 using	 a	 shOprk1-AAV	
clearly	resulted	to	a	significant	decrease	in	k-OR	protein	expression	tested	by	different	
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techniques	 such	 as	 immunohistochemistry	 (for	 PVH)	 and	 western	 blot	 (for	 LHA)	
(Figures	2E-F,	H):	
	

	
	

	
	
	
	In	 addition,	 using	 the	 goat	 anti-k-OR	 (Sigma	 SAB2501442)	 antibody	 it	 has	 been	
demonstrated	 a	 positive	 and	 negative	 k-OR	 immunoreactivity	 for	 tdTomato	 cells	
expressing	MCHR1	(Figure	3E,	Imbernon	et	al.,	Hepatology,	2016):		
	
	

	
	
Some	of	 these	assays	were	carried	out	 in	 the	 laboratory	of	Dr.	 Zsolt	 Liposits,	who	 is	
one	of	the	most	reputed	scientists	in	the	field	of	brain	immunohistochemistry.		
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Another concern is that KOR is significantly expressed on MCH expressing neurons. 
The authors need to analyze their data with this caveat in mind. 
 
REPLY:	
We	 agree	 that	 the	biological	 significance	of	 k-OR	expression	on	MCH	neurons	 is	 yet	
unclear.	We	feel	that	our	data	showing	that	exogenous	pharmacological	blockade	with	
k-OR-antagonists	block	exogenous	MCH-induced	food	intake	indicates	that	the	k-OR	is	
exerting	its	effect	downstream	of	the	MCHR.	Having	said	that,	we	share	the	reviewer’s	
view	 that	 the	 functional	 interaction	 of	 the	 k-OR-	 and	 MCH-systems	 is	 likely	 to	 go	
further	than	the	effect	here	described.	The	presence	of	k-OR	in	MCH	neurons	indicates	
that	the	activity	of	MCH	neurons	 is	also	regulated	by	endogenous	opioid-neurons.	 In	
fact,	it	is	known	that	dynorphin	neurons	are	co-localized	with	MCHR1	neurons	(Chee	et	
al	2013).	Therefore,	these	findings	provide	the	anatomical	and	biochemical	substrate	
of	a	 strong	 functional	 relationships	among	both	 systems.	Whether	 this	 interaction	 is	
related	to	energy	balance	remains	to	be	established.		
	
We	have	now	added	the	following	text	to	the	discussion:	“Nevertheless,	it	is	becoming	
clear	 that	 the	 functional	 interaction	 of	 the	 k-OR-	 and	 MCH-systems	 is	 likely	 to	 go	
further	than	the	effect	described	here.	The	presence	of	k-OR	in	MCH	neurons	indicates	
that	the	activity	of	MCH	neurons	 is	also	regulated	by	endogenous	opioid-neurons.	 In	
fact	it	is	known	that	dynorphin	neurons	are	co-localized		with	MCHR1		neurons	(Chee	
et	al	2013)		and	that		k-OR	is	co-localized	with	MCH	neurons	(Parks	et	al.,	2014).	These	
anatomical	and	biochemical	findings	imply	strong	functional	relationships	between	the	
two	systems.	Further	studies	assessing	the	role	of	the	k-OR	as	a	potential	mediator	of	
MCH	in	other	brain	systems	like	dopaminergic	reward	areas	such	as	the	NAc	and	VTA	
are	warranted.	Similarly,	 the	 functional	significance	of	 the	k-OR	 in	MCH	neurons	and	
putative	regulation	by	endogenous	opioid	peptides	needs	to	be	uncovered”.	
	
Finally,	a	new	reference	(Parks	et	al.,	2014)	has	been	added	to	the	references	list	in	the	
manuscript	(highlight).		
 

 

 



The highlights of our manuscript are: 

 

- Central MCH fails to stimulate food intake in k-OR-deficient mice. 

-  k-OR, in the lateral hypothalamic area (LHA), modulates acute MCH-induced 

feeding. 

- Central MCH activates k-OR in the LHA, and reduces phosphorylated levels of 

S6 ribosomal protein.  

- The genetic activation of p70S6K in the LHA reduces MCH-induced feeding. 
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ABSTRACT 

 Melanin-Concentrating Hormone (MCH) is one of the most relevant orexigenic 

factors specifically located in the lateral hypothalamic area (LHA), with its 

physiological relevance demonstrated in studies using several genetically manipulated 

mice models. However, the central mechanisms controlling MCH-induced hyperphagia 

remain largely uncharacterized. Here, we show that central injection of MCH in mice 

deficient for kappa opoid receptor (k-OR) failed to stimulate feeding. To determine the 

hypothalamic area responsible for this MCH/k-OR interaction, we performed 

virogenetic studies and found that downregulation of k-OR by adeno-associated viruses 

(shOprk1-AAV) in LHA, but not in other hypothalamic nuclei, was sufficient to block 

MCH-induced food intake. Next, we sought to investigate the molecular signaling 

pathway within the LHA that mediates acute central MCH stimulation of food intake. 

We found that MCH activates k-OR and that increased levels of phosphorylated 

extracellular signal regulated kinase (ERK) are associated with downregulation of 

phospho-S6 Ribosomal Protein. This effect was prevented when a pharmacological 

inhibitor of k-OR was co-administered with MCH. Finally, the specific activation of the 

direct upstream regulator of S6 (p70S6K) in the LHA attenuated MCH-stimulated food 

consumption. Our results reveal that lateral hypothalamic k-OR system modulates the 

orexigenic action of MCH via the p70S6K/S6 pathway. 

 

Keywords:  

Hypothalamus, Melanin-Concentrating Hormone, kappa-opioid receptor, food intake. 

 

Chemical compounds studied in this article: 

Melanin-Concentrating Hormone (MCH) (PubChem CID: 24868207) 

Naloxone Hydrochloride (PubChem CID: 5464092) 

Norbinaltorphimine dyhydrochloride (norBNI) (PubChem CID: 5480230) 
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1. Introduction 

 

 In mammals, MCH is a cyclic 19-amino acid neuropeptide synthesized in the 

LHA and zona incerta (ZI). This neuropeptide is a critical hypothalamic regulator of 

energy homeostasis, having effects on both feeding behavior and energy expenditure. 

Central administration (Qu et al., 1996), or transgenic overexpression (Ludwig et al., 

2001) of MCH increases food intake, whereas deletion of MCH (Alon and Friedman, 

2006; Shimada et al., 1998) or its receptor (Chen et al., 2002) reduces body weight. In 

addition, MCH can modulate glucose metabolism (Kong et al., 2010; Ludwig et al., 

2001) and peripheral lipid metabolism in the white adipose tissue (Imbernon et al., 

2013) and liver (Imbernon et al., 2016; Pissios et al., 2006). Although it is well 

recognized that MCH acts in a way to preserve energy, the molecular mechanisms 

underlying MCH action are poorly understood. Previous studies indicate that MCH 

acts in concert with other neuropeptides, such as NPY or POMC in the arcuate 

nucleus (ARC) (Griffond and Risold, 2009), and orexin in LHA (Guan et al., 2002). 

However, there is a general lack of information regarding the interaction with other 

hypothalamic systems. Opioid receptors are widely expressed within the 

hypothalamus (Mansour et al., 1994), and we have previously demonstrated that the 

k-OR system in the ARC is able to modulate the orexigenic effect of ghrelin 

(Romero-Picó et al., 2013). A potential interaction among MCH and the opioid 

system to regulate food intake and food addiction was postulated previously (Lopez et 

al., 2011), but the mechanistic aspects and the specific brain areas where this 

interaction occurs remain unexplored. Since LHA seems to be a link between 

homeostatic and hedonic centers controlling feeding behavior, and k-OR co-localizes 

with MCH receptor in the LHA (Imbernon et al., 2016), we investigated whether 

MCH may act via the opioid system within this hypothalamic area to drive acute food 

consumption. 

 

 Here we use multiple pharmacological and genetic approaches to provide 

evidence that MCH-induced food intake is mediated through the activation of k-OR 

signaling specifically within the LHA. This MCH/k-OR interaction involves reduced 

phospho-S6, and the functional relevance of this mechanism was demonstrated by the 

*Manuscript
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fact that genetic constitutive activation of p70S6K in the LHA blocked MCH-induced 

feeding. These results confirm the relevant role of the hypothalamic kappa opioid 

system as a modulator of MCH orexigenic effect; positioning k-OR as a common 

neuronal signaling pathway integrating central orexigenic signals.  

 

2. Material and methods 

2.1. Animal Procedures and Chemicals 

 Male Sprague-Dawley rats (200-250 g) were housed individually and 

maintained on 12:12-h light-dark cycle at constant temperature (211ºC) and 

humidity (40-50%). They were allowed ad libitum access to water and standard chow 

from Scientific Animal (proteins 16%, carbohydrates 60%, and fat 3%). In all 

procedures implying surgery, rats were anesthetized by an intraperitoneal injection of 

ketamine-xylacine (ketamine 100mg/Kg BW + xylazine 15 mg/Kg BW).  

 Adult (8-10 weeks old) wild type (WT) C57BL6 mice, mutant mice (Oprk1
-/-

) 

that lack functional k-OR subtype 1 (B6.129S2-Oprk1
tm1kff

/J, The Jackson 

Laboratory) (Imbernon et al., 2016; Romero-Picó et al., 2013), were maintained on an 

ad libitum chow diet in Specific Pathogen Free (SPF) conditions and housed with a 

12:12-h light-dark cycle. For surgery, mice were anesthetized by an intraperitoneal 

injection of 138 mg ketamine/Kg BW + 7 mg xylacine/Kg BW. 

 Intracerebroventricular (i.c.v.) central injections were performed between 

9:00-10:00 am. All animal procedures were conducted in accordance with the 

standards approved by the Faculty Animal Committee at the University of Santiago 

de Compostela, and experiments were performed in agreement with the rules of 

Laboratory Animal Care and International Law on Animal Experimentation. Opioid 

receptors antagonists: naloxone hydrochloride (non-selective) and norBNI (nor-

Binaltorphimine dihydrochloride), a selective k-OR antagonist were purchased by 

Tocris (St Lois, MO, USA). Melanin-Concentrating Hormone (MCH, H-1482) was 

provided by Bachem (Bubendorf, Switzerland).  

 

2.2. Pharmacological studies 

 Two different approaches were addressed in this study. First, to identify MCH 

targets we used two groups: 1) control rats (i.c.v. vehicle) and 2) MCH treated rats 

(i.c.v. MCH). Second, to study the effect of opioid receptor antagonists on acute 
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MCH-induced food intake, rats were fed ad libitum and organized in three groups 

(n=10/per group) receiving double i.c.v. injection: 1) vehicle + vehicle; 2) vehicle + 

MCH; 3) opioid receptor antagonist + MCH. I.c.v. cannulae aimed at the lateral 

ventricle were implanted as describe previously (Romero-Picó et al., 2013). After 5 

days of recovery, opioid receptor antagonist was administered i.c.v. 20 min prior 

MCH injection. The doses employed to inhibit total opioid receptors (naloxone) and 

k-OR (norBNI) was 75 nmol and 40 nmol, respectively (Romero-Picó et al., 2013). 

The dose of MCH utilized to stimulate acute food intake at 2h was 8.4 nmol/rat in 

5l. WT and Oprk-/- mice (n=8 per group) received a single injection of vehicle or 

MCH (4.2 nmol/mouse in 2 l) as previously described (Imbernon et al., 2016). We 

measured food intake over 2h and then animals were sacrificed and brains frozen at -

80 ºC. For molecular studies in rats, we sacrificed the animals at 15, 30, 90 or 120 

min and froze the brains at -80ºC until nuclei isolation.   

 

2.3. Genetic approaches  

 We used adeno-associated viruses (AAV) encoding scramble or short hairpin 

kappa opioid receptor subtype 1 mRNA (shOprk1) as previously described (Imbernon 

et al., 2016; Romero-Picó et al., 2013). Stereotaxic injections of AAV into specific 

brain areas was carried out using previously established coordinates (Imbernon et al., 

2016; Romero-Picó et al., 2013): PVH ( 0.5 mm from the midline, 1.9 mm posterior 

to bregma, and 8 mm ventral from the surface of the skull); ARC ( 0.3 mm lateral, - 

2.8 mm antero-posterior, and 10.2 mm dorso-ventral); LHA ( 2 mm lateral, - 2.85 

mm antero-posterior, and 8.1 mm dorso-ventral). For each nucleus studied we set up 

four groups (n=10 rats /per group): 1) scramble-AVV + vehicle i.c.v.; 2) scramble-

AAV + MCH i.c.v.; 3) shOprk-AAV + vehicle i.c.v.; 4) shOprk-AAV + MCH i.c.v. 

15 days after the stereotaxic surgery, an i.c.v. cannula was implanted in the lateral 

ventricle and 5 days later, we administered vehicle (saline) or MCH i.c.v. and 

measured food consumption at 2h. Then, rats were sacrificed and brains were frozen 

at -80ºC. 

  

 We utilized null adenoviruses (Control-Ad) or adenoviruses encoding a 

constitutively active p70S6Kinase form (CAS6K-Ad) (Blouet et al., 2008) to study 

the molecular cascade involved in MCH action. Plasmid pRK7-HA-S6K1-F5A-E389-
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R3A was courteously gift by Dr. Clémence Blouet. Cloning and package in Ad5-

CMV-GFP adenoviruses was performed at Viral Vector Production Unit (Universitat 

Autònoma de Barcelona). Four groups (n=10 rats per group) were subjected to 

stereotaxic surgery: 1) Control-Ad + vehicle i.c.v.; 2) Control-Ad + MCH i.c.v.; 3) 

CAS6K-Ad + vehicle i.c.v.; 4) CAS6K-Ad + MCH i.c.v. Adenoviruses were 

bilaterally injected in the LHA ( 2 mm lateral, - 2.85 mm antero-posterior, and 8.1 

mm dorso-ventral). One week after surgery, an i.c.v. cannula was implanted and 5 

days later we i.c.v. injected vehicle or MCH. At 2h, we measured food intake and rats 

were sacrificed and brains were stored at -80ºC until analysis.  

 

2.4. RNA isolation and TaqMan 

 Total RNA isolation from PVH, ARC, and LHA was performed following 

TRIZOL Reagent manufacture´s protocol. Reverse transcriptase (RT) and real-time 

PCR (TaqMan) was done as previously described (Lopez et al, 2008). Primers used in 

this study are depicted in Table I (Supplementary information). 

 

2.5. Western Blot 

 Total protein extract was obtained from LHA using lysis buffer (50 mM Tris-

HCl pH=7.5, 1 mM EGTA, 1 mM EDTA, 1% Triton-X100, 1 mM Sodium 

Orthovanadate, 50 mM Sodium Fluoride, 5 mM Sodium Pyrophosphate, 0.27 M 

sucrose). We charged 20 g of total protein in 8-10% SDS-PAGE acrylamide gels. 

Proteins were transferred to Immuno-Blot PVDF membranes (BIORAD) with 0.2 or 

0.45 g pore size. The membranes were subsequently blocked with 3-5% BSA in 

TBS 0.1% tween (TBS-T) for 1h. Membranes were incubated overnight with primary 

antibodies in blocking solution at 1:1000 dilution: goat anti-k-OR (Sigma 

SAB2501442), rabbit anti-phospho-ERK (Cell Signaling #4370), rabbit anti-

p70S6Kinase (Cell Signaling #9202), rabbit anti-phospho-S6 ribosomal protein 

(Ser235/236) (Cell Signaling #2211), mouse anti-S6 ribosomal protein (Cell 

Signaling #2317) and mouse anti--Actin (Sigma A5316). Afterwards, membranes 

were washed three times 10 minutes with TBS-T, incubated 1h with secondary 

antibodies (DAKO) at 1:5000 dilutions, and again washed before protein detection 

using ECL chemiluminescent western blot substrate (Thermo Scientific). Images were 

quantified by ImageJ software.  



5 

 

 

 

2.6. Immunohistochemistry and GFP visualization 

 Brains were fixed in 4% formaldehyde calcium. Paraffin-embedded coronal 

brain sections (5 m) were dried overnight at 55-60 ºC, de-paraffined with xylene and 

then rehydrated. Antigenic recuperation was performed incubating 20 min at 97ºC in 

a 10 mM Tris-EDTA buffer. For immunohistochemistry (IHC), sections were 

incubated overnight at 4ºC with goat anti-k-OR receptor (Sigma SAB2501442) 

diluted 1:3000, rabbit anti-phospho-S6 (Cell Signaling #2211) (1:200), or rabbit anti-

p70S6Kinase (Cell Signaling #9202) (1:100) in EnVision Flex Antibody diluent 

(DAKO). After three washes, sections were incubated with LSAB-DAKO secondary 

for 30 min. Images were captured in a conventional microscopy (Olympus XC50). 

Quantification of phospho-S6 immuno-positive signal was performed through Frida 

software. 

Immunofluorescence was destined to test specific nuclei injection and co-

localization studies. Sections were incubated with rabbit antibody against green 

fluorescent protein (GFP) (Abcam ab290) (1:1000), goat anti-k-OR receptor (Sigma 

SAB2501442), or rabbit anti-MCHR (Abnova PAB16225). To visualize green 

positive signal, we used a goat anti-rabbit Alexa 488 (for GFP) or donkey anti-goat 

Cy2 (for k-OR) as secondary antibodies (1:500). To visualize red positive signal, we 

used donkey anti-rabbit Cy3 (for MCHR) (Jackson ImmunoResearch laboratories, 

UK). Images were captured in a confocal microscopy (Leica TCS-SP2).  

  

2.7. Statistical Analysis and Data Presentation 

 Results are expressed as mean  SEM. GraphPad Prism (version 4.0) was used 

for the data analysis. Comparison between two groups was performed using an 

unpaired t-test. One-way ANOVA followed by Bonferroni´s multiple comparison test 

was used to compare three treatments (vehicle, MCH, and norBI+MCH). Two-way 

ANOVA was used to examine interactions between variables (k-kOR silencing x 

MCH or S6K activation x MCH effect) followed by a Bonferroni´s post-hoc test. 

Sample size and statistical values are defined in each figure legend. P<0.05 was 

considered statistically significant.  
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3. Results 

3.1. Pharmacological or genetic inhibition of the k-OR System blunts MCH-

orexigenic effect  

 Central MCH administration in rats significantly increased food intake after 

2h (vehicle vs MCH, p<0.01) (Figures 1A and 1B). The orexigenic effect of MCH 

was completely blocked by the general opioid receptor antagonist naloxone (75 nmol) 

(MCH vs MCH+naloxone, p<0.001) (Figure 1A). This effect was likely mediated by 

the k-OR receptor since the specific opioid receptor antagonist norBNI (40 nmol) 

significantly blocked the hyperphagic action induced by MCH at 2h to similar extent 

(MCH vs norBNI+MCH, p<0.05) (Figure 1B). 

Dose of antagonists used were chosen based on a dose- and time-response 

experiment. We found that 30 g/rat (equivalent to 75 nmol naloxone and 40 nmol 

norBNI) (i.c.v.) is the minimal amount required to significantly reduce food intake 

over 1-2h in fasted rats (Supplementary Figure S1A and S1B).  

In our experimental model, we did not include a treatment group with naloxone 

or norBNI alone, without co-injection of MCH, since it was previously demonstrated 

by our group that under the same experimental conditions, the non-selective inhibition 

of opioid system with naloxone, or the pharmacological inhibition of k-OR using 

norBNI have not a per se effect on food intake during the acute measurement of food 

consumption (2h) (Romero-Picó et al., 2013).  

Naloxone and norBNI were delivered 20 min prior to MCH administration. It has 

been shown, that at 20 min, i.c.v. norBNI produces transient effects at both mu- and 

delta- receptors (Horan et al., 1992). Since norBNI is a long-lasting antagonist (up to 

3 weeks in vivo) (Bruchas et al., 2007), we hypothesized that if the effects of norBNI 

mediating MCH-induced food intake were specific, the injection of norBNI 24h prior 

to MCH administration would recapitulate its response. We found that identically to 

20 min prior to MCH injection, norBNI injected 24h prior to MCH blunted its 

orexigenic action (Supplementary Figure S2). Moreover, this additional experiment 

reinforces the fact that norBNI per se has not an anorectic effect 2h after i.c.v.  

    

In order to confirm the physiological relevance of the k-OR system on acute 
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MCH-induced feeding, we i.c.v. administered MCH in mice lacking functional k-OR. 

We found that contrary to the orexigenic effect of i.c.v. MCH in wild type mice, 

MCH was not able to stimulate food intake in Oprk-/- mice (Figure 1C). These results 

demonstrate that MCH needs a functional central k-OR system to stimulate food 

consumption.  

 

3.2. The functional interaction between MCH and k-OR occurs in the LHA  

 Recent data have shown that MCHR/k-OR receptors are co-expressed in LHA 

(Imbernon et al., 2016). To investigate if this coincidence was restricted to the LHA 

or it could be found in other hypothalamic sites, we performed double IHC of MCHR 

and k-OR. Our data showed strong co-localization of both receptors in the ARC 

(Figure 1D-F) and the PVH (Figure 1G-I). Besides this morphological evidence, to 

evaluate the specific hypothalamic nucleus responsible of the MCH-k-OR interaction, 

we stereotaxically delivered AAV encoding a shRNA against k-OR (shOprk1) in 

those places (Figure 2A). Infection efficiency was assessed by expression of GFP 

(Figure 2B-D) and decreased k-OR levels in the PVH (Figure 2E and 2F), LHA 

(Figure 2G and 2H), and ARC (Figure 2I). To exclude any shRNA-induced saturation 

of endogenous neuronal microRNAs pathway potentially masking our results, we 

analyzed mRNA expression of mir124 and mir138 in LHA, two markers of toxicity 

(van Gestel et al, 2014). No changes were observed in the expression of mir124 and 

mir138 after the knockdown of Oprk1 in the LHA compared to AAV encoding 

scramble shRNA, indicating that the use of shOprk1-AAV is viable for mRNA 

Oprk1-silencing (Figure 2J). Of note, we have previously demonstrated that this 

shRNA for k-OR does not affect expression of the other opioid receptors, supporting 

the specificity of this knockdown (Romero-Picó et al., 2013). 

 Then, we analyzed the acute effect of MCH i.c.v. on food intake, and 

expectedly we found that cumulative food intake was significantly increased in 

Control-AAV animals. The orexigenic action of MCH i.c.v. was maintained when k-

OR was down-regulated in the ARC or PVH (Figure 2K). However, when k-OR was 

down-regulated in the LHA, we observed a significant interaction between k-OR 

silencing and MCH orexigenic response (Pinteraction=0.0121, F=7.106, DF=1). While 

control rats treated with MCH showed a marked hyperphagia during the 2h period 

post-injection (Pvh vs MCH<0.0001), MCH-induced food intake was significantly 

decreased when we knocked down the k-OR specifically in LHA (PMCH vs 
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shOprk/MCH=0.0087) (Figure 2K). These results suggest that k-OR signaling in the LHA 

is essential for the effect of MCH on feeding.  

 

3.3. MCH increases phosphorylated levels of ERK in the LHA  

Once we had established that k-OR located in the LHA was contributing to 

MCH-induced hyperphagia, we investigated the downstream molecular mechanisms 

involved in the interaction between MCH and k-OR within the LHA. Since the 

inhibition of k-OR affects the orexigenic MCH response, we postulated that the kappa 

opioid system might act downstream MCH signaling.  

First, we corroborated the accuracy of nuclei isolation by assessing the mRNA 

expression of specific markers, namely pro-opiomelanocortin (POMC) in the ARC, 

corticotropin-releasing hormone (CRH) in the PVH, and proOrexin in the LHA 

(Supplementary figure S3).  

k-OR activation is known to activate extracellular signal-regulated kinase 

(ERK), the c-Jun N-terminal kinase (JNK), and p38 MAPK in vitro and in vivo 

(Bruchas and Chavkin, 2010). Since the best characterized opioid-induced Mitogen-

Activated Protein Kinases (MAPK) network to date is ERK1/2, we analyzed the 

activity of ERK under central MCH stimulation. We observed that MCH induced the 

phosphorylation of ERK in the LHA at 15 min (p<0.05) (Figure 3A). This molecular 

effect rapidly disappeared, with the molecular changes not detected at 30 or 120 min. 

Thus, the rapid phosphorylation of ERK in the LHA after 15 min i.c.v. MCH injection 

denotes an activation of k-OR system by MCH.  The increased levels of phospho-

ERK were accompanied by reduced ribosomal S6 activity in LHA (Figure 3B), since 

rats treated with MCH showed a significant reduction of phosphorylated-S6 form in 

the LHA, an effect absent after 90 min (Figure 3C-I). 

 

3.4. Activation of p70S6Kinase in LHA impairs MCH orexigenic effect 

 If the hypothesis that MCH acts in the LHA by attenuating the S6 activity is 

correct, the activation of its upstream direct regulator would be expected to block the 

orexigenic effect of MCH. In order to test this idea, we injected an adenovirus 

encoding a constitutive active form of p70S6K (CAS6K-Ad) in the LHA (Figure 1A). 

We confirmed the efficiency of the viral vector by detecting increased p70S6K 

protein levels in the LHA 12 days after administration of CAS6K-Ad compared to 

control rats (Figure 4B-D). Although the highest expression of p70S6K was detected 
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at day 12, activation of p70S6K was significant from day 4 (Figure 4E). Next, we 

i.c.v. administered vehicle or MCH (8.4 nmol) in rats previously injected with either 

Control-Ad or CAS6K-Ad in LHA, and we found that the activation of p70S6K in the 

LHA attenuated MCH-induced food intake (PMCH and CAS6K interaction=0.009, F=7.646, 

DF=1) (Figure 4F). A post-hoc test indicated that CAS6K-Ad rats stimulated with 

MCH ate significantly less than control-MCH animals (p<0.05). 

At the molecular level, we confirmed the up-regulation of p70S6K form in the 

LHA under CAS6K-Ad activation (p<0.001) (Figure 4G). On the other hand, to 

further validate the overexpression model we checked the direct downstream target of 

p70S6K. The ratio phospho-S6/S6 increased when p70S6K was constitutively 

activated under MCH i.c.v. stimulation (p<0.05) (Figure 4H). 

 

4. Discussion 

 Molecular/synaptic mechanisms of how MCH controls feeding have 

previously been detailed by the DiLeone group (Georgescu et al., 2005; Sears et al., 

2010). They demonstrated that MCH regulates glutamate receptor activity in the 

nucleus accumbens (NAc), where it acts to modulate feeding behavior. However, 

within the hypothalamus the molecular mechanisms responsible of MCH-induced 

orexigenic response are not resolved. Here, in keeping with previous findings (Lopez 

et al., 2011), we observe that central non-selective pharmacological inhibition of the 

opioid system with naloxone impairs acute MCH-induced appetite. Furthermore, our 

results also document that the kappa opioid system located in LHA plays an important 

role in modulating the MCH-mediated orexigenic response in rats. Certainly, the 

degree of blockade observed for virogenetic-induced knockdown of k-OR in the LHA 

was lower than for the i.c.v. pharmacological blockade. This observation was 

somewhat expected since it is well known that a lower number of neurons are affected 

by the virogenetic approach. Moreover, we cannot rule out a potential extra-

hypothalamic MCH action through k-OR system. Indeed, a good candidate is the NAc 

where MCHR1 is strongly expressed. Further studies to address this issue are clearly 

merited.  Whatever the explanation, our data conclusively show that within the LHA 

the mechanism of action of MCH involves the hypothalamic k-OR system and led us 

to hypothesizes that that k-OR system may play an important role modulating the 

acute MCH orexigenic response similarly to what occurs with ghrelin in ARC. 

Noteworthy, we previously demonstrated that the blockade of k-OR signaling in ARC 
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is sufficient to interfere with the orexigenic ghrelin response mediated by NPY in an 

AMPK-independent manner (Romero-Picó et al., 2013).  

  The role of the opioid system on feeding regulation is well established 

(Bodnar, 2015; Gosnell et al., 1986; Nogueiras et al., 2012). Within the mesolimbic 

dopamine reward system, opioids promote appetite for palatable foods through the 

ventral tegmental area (VTA) and the NAc network (Noel and Wise, 1995). Besides 

the hedonic aspects of feeding regulation by the opioid system, opioid receptors are 

widely expressed in the hypothalamus (Mansour et al., 1994) and interact with 

homeostatic signals to control food intake. Indeed, the cross-talk between the opioid 

system and ARC neuropeptides, such as POMC (Pennock and Hentges, 2011), AgRP 

(Hagan et al., 2001), and NPY (Kotz et al., 1993; Schick et al., 1991) has been 

previously described. MCH receptors and k-OR are co-localized in different 

hypothalamic areas including ARC, PVN, and LHA, however we found that MCH-

induced hyperphagia was prevented by genetic inhibition of Oprk1 only in LHA, 

indicating that this hypothalamic area is the most relevant for MCH/k-OR interaction 

in terms of food intake. Nevertheless, it is becoming clear that the functional 

interaction of the k-OR- and MCH-systems is likely to go further than the effect 

described here. The presence of k-OR in MCH neurons indicates that the activity of 

MCH neurons is also regulated by endogenous opioid-neurons. In fact it is known that 

dynorphin neurons are co-localized  with MCHR1  neurons (Chee et al 2013)  and 

that  k-OR is co-localized with MCH neurons (Parks et al., 2014). These anatomical 

and biochemical findings imply strong functional relationships between the two 

systems. Further studies assessing the role of the k-OR as a potential mediator of 

MCH in other brain systems like dopaminergic reward areas such as the NAc and 

VTA are warranted. Similarly, the functional significance of the k-OR in MCH 

neurons and putative regulation by endogenous opioid peptides needs to be 

uncovered. 

The LHA is historically considered as a feeding center that connects the homeostatic 

circuitries to the hedonic ones (Castro et al., 2015). While MCH is mainly produced 

in the LHA, MCH neurons project to numerous hypothalamic and extra-hypothalamic 

areas, where MCHR is expressed at the post-synaptic level. Thus, MCH does seem to 

have a role in the LHA through its interaction with k-OR system, despite the low 

levels of MCH receptors detected in this area (Chee et al., 2013). Although we found 

a clear crosstalk between MCH and k-OR in the LHA, we cannot rule out that this 
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interaction may also cause molecular changes on extra-hypothalamic nuclei to where 

MCH neurons project, such as VTA or NAc. Further experiments are necessary to 

answer these questions and to elucidate the whole MCH neuronal network.  

 

 Importantly, our data show that the crosstalk MCH/k-OR reaches the 

physiological target of the growth factor-activated p70S6K, namely the 40S subunit 

of the S6 ribosomal protein that play a key role in modulating translational efficiency. 

The phosphorylation of S6 ribosomal protein is a valuable hallmark of neuronal 

activity and its biological role in the brain is one of the major challenges nowadays. 

p70S6K possesses autoinhibitory and catalytic domains. Activation of p70S6K occurs 

through a complex series of phosphorylation events on eight or more serine or 

threonine residues. As reviewed by Dufner and Thomas (Dufner and Thomas, 1999), 

these phosphorylation sites are S404, S411, S418, S424 and T421 on the C-terminal 

autoinhibitory domain and T229, S371 and T389, which are critical for catalytic 

activity. Autoinhibitory sites, on the other hand, are thought to be phosphorylated by 

members of the mitogen-activated protein kinase (MAPK) family, p38 and ERK 

(Mukhopadhyay et al., 1992) and elicit a conformational change to facilitate 

phosphorylations in the catalytic domain. Previous studies linked ERK with the 

regulation of S6K (Lee et al., 2016). Although these studies were undertaken in a 

different context, during dopaminergic neuronal differentiation of human neuronal 

stem cells, the authors observed that the increase in phospho-ERK was accompanied 

by a reduction in phospho-p70S6K. Conversely, inhibition of ERK significantly 

increased the levels of phospho-p70S6K without activation of Akt and mTOR, 

indicating that ERK might directly inhibit p70S6K.  Due to the complexity of p70S6K 

activity, we decided to focus on its direct downstream target in order to identify if k-

OR activation by MCH and increased phosphorylated ERK (phospho-ERK) levels 

would imply changes in the active (phosphorylated) form of S6. Our results show that 

in vivo the increased level of phospho-ERK induced by i.c.v. MCH administration 

was accompanied by a significant reduction of phospho-S6 protein levels at 15 min. 

This observation also suggests that p70S6K is regulated by ERK signaling pathway 

during the acute control of food intake in vivo studies. This rapid response mediated 

by the activation of k-OR might trigger other molecular cascades to regulate food 

consumption since the highest orexigenic physiological response induced by MCH is 

observed at 2h where molecular changes in phospho-ERK and phospho-S6 are absent. 
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Nevertheless, this is the first report of the link between hypothalamic k-OR activation 

and the regulation of p70S6K pathway through MCH in the central nervous system 

(CNS), demonstrating the crosstalk between ERK and S6 during acute food intake 

regulation mediated by MCH. 

 

Finally, it has been previously reported that depression of p70S6K pathways 

in the mediobasal hypothalamus (MBH) during fasting promotes cellular mechanisms 

to stimulate appetite whereas the specific activation of p70S6K reduces food intake 

and protects against the adverse effects of a high fat diet (Blouet et al., 2008). Our 

findings indicate that the activation of p70S6K in LHA decreases the food intake 

promoted by MCH, thus providing additional evidence of the relevance of this kinase 

on the control of appetite.  

 

5. Conclusion  

 In summary, we describe a novel interaction by which the ERK and 

p70S6K/S6 cascades are modulated by MCH through k-OR activation during the 

acute MCH-induced orxigenic response. We found that (a) administration of MCH 

rapidly activates k-OR in the LHA and increases phospho-ERK protein levels; (b) 

elevated phospho-ERK levels reduce S6 activity in this area; and (c) at the functional 

level, constitutively activation of S6 upstream kinase (p70S6K) in LHA significantly 

decrease the acute food intake induced by MCH. Thus, our findings indicate that k-

OR integrates central MCH signaling with the p70S6K/S6 pathway to regulate the 

action of MCH on acute food intake regulation (Figure 5).  

Taking into account that MCH plays a major role in the control of energy 

homeostasis, and that MCH receptor antagonists are in the pipeline of several 

pharmaceutical companies, our data support the relevance of the hypothalamic kappa 

opioid system as a potential drug target. In keeping with this, the recent approval of 

non-selective opioid receptor antagonists for treatment of obese patients adds 

translational value to our findings.  
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Figure Legends  

 

Figure 1. Central blockade of kappa opioid receptor (k-OR) disrupts MCH orexigenic 

response in rats and mice animal models. (A-B) MCH-stimulated food intake upon 2 

hours after intracerebroventricular (i.c.v.) pre-administration of either vehicle or (A) 

75 nmol naloxone or (B) 40 nmol norBNI in rats (n=10 per group). (C) MCH-induced 

food consumption 2 hours after i.c.v. injection of either vehicle or 4.2 nmol MCH in 

wild type (WT) mice (n=12-13 mice/group), and mutant mice for functional k-OR 

(Oprk1-/-) (n=10-11 mice/group). (D-I) Representative images of two-color 

immunofluorescence showing a subpopulation of ARC neurons that exhibits 

immunoreactivity for (D) MCHR (in red), (E) k-OR (in green) and (F) a merged 

image of the two. Corresponding immunofluorescent labeling was also carried out in 

the PVH: singly-labeled neurons appear either (G) red or (H) green, whereas (I) co-

expression (arrowhead) is indicated by yellow. Scale bars: 75 m. Bar graphs on the 

right indicate the degree of co-expression. Values are represented as means  SEM. 

Acute food intake in (A-B) rats was analyze by one-way ANOVA followed 

Bonferroni´s multiple comparisons, while food consumption in (C) mice was 

evaluated by a student t-test. * represents differences compared to vehicle and # 

indicates differences compared to MCH-treated animals.  
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Figure 2. Blockade of k-OR in the LHA using an AAV-particles lead to a reduction 

of food intake elicited by MCH. (A) Illustration of the specific rat hypothalamic 

nuclei (PVH, ARC, and LHA) where shOprk1-AAV were injected to knockdown k-

OR signaling. (B-D) Representative GPF visualization of targeted hypothalamic 

nuclei: (B) PVH, (C) ARC, (D) LHA. Scale bars: 500 m. (E-F) Demonstration of k-

OR silencing by immunohistochemistry after 2 weeks of either (E) Control-AAV or 

(F) shOprk-AAV injection in PVH. Scale bars: 500 m. (G-H)) mRNA Oprk1 or 

protein expression of k-OR after shOprk-AAV injections in LHA measured by (G) 

TaqMan and (H) western blot (n=8 per group). (I) mRNA Oprk1 levels in ARC 

following injection of either Control-AAV or shOprk1-AAV into this nucleus (n=8 

per group).  (J) mir124 and mir138 mRNA expression in LHA to test the viability of 

shOprk-AAV once targeted into the LHA (n=8 per group). (K) Food intake 

stimulated by MCH (8.4 nmol) in rats at 2 hours under specific silencing of k-OR into 

the PVH (n=10 per group), ARC (n=10 per group), or LHA (n=20 per group). Values 

are expressed as means  SEM. Student t-test was performed to (E-I) confirm 

significant reduction of k-OR receptor, or (J) assay mir124 and mir138 expression. 

Two-way ANOVA followed by Bonferroni´s multiple comparison was used to 

evaluate the interaction MCH/k-OR system on food consumption. a=MCH orexigenic 

effect (p<0.001), b=shOprk-AAV knockdown effect, and c=significant MCH/shOprk-

AAV kockdown interaction (p<0.05) in (K) rats stereotaxically treated with either 

Control-AAV or shOprk-AAV in LHA. 

 

Figure 3. Rapid activation of k-OR mediated by MCH lead to a reduction of 

phosphor-S6 in LHA. (A) Western Blot for phosphorylated levels of ERK performed 

in LHA rat samples, and normalized against -actin after 15, 30, and 120min i.c.v. 

MCH (8.4 nmol) administration (n=8 per group). Lines reflect the cropped sites of the 

western blot images. (B-I) Immunohistochemistry detection of (C-I) phospho-S6 

(pS6) expression, and (B) localization in LHA in rats treated with (C, G) vehicle, (D, 

H) MCH (8.4 nmol), and (E, I) norBNI (40 nmol)/MCH (8.4 nmol) at (C-E) 15 min, 

and (G-I) 90 min (C) (n=6-10 per group). Scale bars: (B) 2mm; (C-I) 500 mm. Bar 

graphs on the right indicate the protein levels expressed as percentage normalized to 

vehicle group. Values are represented as means  SEM. For all pairwise comparisons 

a (A) student t-test was used, whereas in cases with three groups, a (C-I) one-way 
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ANOVA followed Bonferroni´s multiple comparisons were used. * indicates 

differences compared to vehicle and # indicates differences compared to MCH-treated 

animals.  

 

Figure 4. Constitutive activation of p70S6K (CAS6K) in LHA decreases the food 

intake in rats centrally treated with MCH. (A) Injection of Ad vectors encoding for a 

green fluorescent protein (GFP) to test a specific site of expression in LHA. Scale bar: 

1mm.  (B-D) Immunohistochemistry protein detection of p70S6K in either (B) 

Control-Ad or (C) CAS6K-Ad rats (n= 4 per group), and (D) negative control. Scale 

bars: 500 mm. (E) Western blot for p70S6K performed in LHA samples and 

normalized against -actin from day 0 (control) to day 12 (n=4 per group). (F) 

Cumulative food intake stimulated by i.c.v. MCH (8.4 nmol) at 2 h under the 

activation of p70S6K using CAS6K-Ad particles (n=10 per group). (G) Protein levels 

of p70S6K measured by western blot and corrected by -actin in either Control-Ad or 

CAS6K-Ad vehicle rats. (H) Ratio of phosphor-S6/S6 analyzed by western blotting 

and normalized against  -actin to validate the constitutively activation of p70S6K 

(n=10 per group).  Values of bar graphs are represented as means  SEM. Two-way 

ANOVA followed by a Bonferroni´s Multiple Comparison was used to (F) evaluate 

the interaction between CAS6K activation and MCH orexigenic effect. a=MCH 

significant effect, and c=significant interaction. Student´s t-test analysis was used to 

evaluate (E) the expression of p70S6K over 12 days in rats treated with CAS6K-Ad 

compared to control rats, and (G, H) the activation of p70S6K/S6 pathway in CAS6K-

Ad rats compared to Control-Ad animals. P<0.05 was considered statistically 

significant (*p<0.05, **p<0.01, ***p<0.001) compared to Control-Ad group. 

 

Figure 5. Scheme summarizing the mechanism of action used by MCH in the 

LHA to regulate the acute food intake. (A) i.c.v. MCH administration rapidly 

activates k-OR by enhancing phospho-ERK, and the activation of k-OR has an 

inhibitory effect on p70S6K/S6 pathway leading to an increase of food intake over 2 

h. The reduction of appetite caused by (B) pharmacological inhibition of k-OR 

(norBNI) or (C) CAS6K-Ad activation in LHA demonstrate a crosstalk between the 

physiological orexigenic response of MCH and these two systems.  
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