5,626 research outputs found

    General polygamy inequality of multi-party quantum entanglement

    Full text link
    Using entanglement of assistance, we establish a general polygamy inequality of multi-party entanglement in arbitrary dimensional quantum systems. For multi-party closed quantum systems, we relate our result with the monogamy of entanglement to show that the entropy of entanglement is an universal entanglement measure that bounds both monogamy and polygamy of multi-party quantum entanglement.Comment: 4 pages, 1 figur

    Heavy doping effects in high efficiency silicon solar cells

    Get PDF
    A model for bandgap shrinkage in semiconductors is developed and applied to silicon. A survey of earlier experiments, and of new ones, give an agreement between the model and experiments on n- and p-type silicon which is good as far as transport measurements in the 300 K range. The discrepancies between theory and experiment are no worse than the discrepancies between the experimental results of various authors. It also gives a good account of recent, optical determinations of band gap shrinkage at 5 K

    Phase Synchronization and Polarization Ordering of Globally-Coupled Oscillators

    Get PDF
    We introduce a prototype model for globally-coupled oscillators in which each element is given an oscillation frequency and a preferential oscillation direction (polarization), both randomly distributed. We found two collective transitions: to phase synchronization and to polarization ordering. Introducing a global-phase and a polarization order parameters, we show that the transition to global-phase synchrony is found when the coupling overcomes a critical value and that polarization order enhancement can not take place before global-phase synchrony. We develop a self-consistent theory to determine both order parameters in good agreement with numerical results

    Generalized W-Class State and its Monogamy Relation

    Full text link
    We generalize the W class of states from nn qubits to nn qudits and prove that their entanglement is fully characterized by their partial entanglements even for the case of the mixture that consists of a W-class state and a product state 0n\ket{0}^{\otimes n}.Comment: 12 pages, 1 figur

    Nonlocality of Majorana modes in hybrid nanowires

    Full text link
    Spatial separation of Majorana zero modes distinguishes trivial from topological midgap states and is key to topological protection in quantum computing applications. Although signatures of Majorana zero modes in tunneling spectroscopy have been reported in numerous studies, a quantitative measure of the degree of separation, or nonlocality, of the emergent zero modes has not been reported. Here, we present results of an experimental study of nonlocality of emergent zero modes in superconductor-semiconductor hybrid nanowire devices. The approach takes advantage of recent theory showing that nonlocality can be measured from splitting due to hybridization of the zero mode in resonance with a quantum dot state at one end of the nanowire. From these splittings as well as anticrossing of the dot states, measured for even and odd occupied quantum dot states, we extract both the degree of nonlocality of the emergent zero mode, as well as the spin canting angles of the nonlocal zero mode. Depending on the device measured, we obtain either a moderate degree of nonlocality, suggesting a partially separated Andreev subgap state, or a highly nonlocal state consistent with a well-developed Majorana modeThis research was supported by Microsoft, the Danish National Research Foundation, the European Commission, and the Spanish Ministry of Economy and Competitiveness through Grants No. FIS2015-65706-P, No. FIS2015-64654-P, and No. FIS2016-80434-P (AEI/FEDER, EU), the Ramón y Cajal programme Grant No. RYC-2011-09345, and the María de Maeztu Programme for Units of Excellence in R&D (Grant No. MDM-2014-0377). C.M.M. acknowledges support from the Villum Foundation. M.-T.D. acknowledges support from State Key Laboratory of High Performance Computing, Chin

    Harmonic oscillations and their switching in elliptical optical waveguide arrays

    Full text link
    We have studied harmonic oscillations in an elliptical optical waveguide array in which the coupling between neighboring waveguides is varied in accord with a Kac matrix so that the propagation constant eigenvalues can take equally spaced values. As a result, long-living Bloch oscillation (BO) and dipole oscillation (DO) are obtained when a linear gradient in the propagation constant is applied. Moreover, we achieve a switching from DO to BO or vice versa by ramping up the gradient profile. The various optical oscillations as well as their switching are investigated by field evolution analysis and confirmed by Hamiltonian optics. The equally spaced eigenvalues in the propagation constant allow viable applications in transmitting images, switching and routing of optical signals.Comment: 14 pages, 5 figure

    Selfsimilar Domain Growth, Localized Structures and Labyrinthine Patterns in Vectorial Kerr Resonators

    Full text link
    We study domain growth in a nonlinear optical system useful to explore different scenarios that might occur in systems which do not relax to thermodynamic equilibrium. Domains correspond to equivalent states of different circular polarization of light. We describe three dynamical regimes: a coarsening regime in which dynamical scaling holds with a growth law dictated by curvature effects, a regime in which localized structures form, and a regime in which polarization domain walls are modulationally unstable and the system freezes in a labyrinthine pattern.Comment: 13 pages, 6 figure

    Effect of Shear Flow on the Stability of Domains in Two Dimensional Phase-Separating Binary Fluids

    Full text link
    We perform a linear stability analysis of extended domains in phase-separating fluids of equal viscosity, in two dimensions. Using the coupled Cahn-Hilliard and Stokes equations, we derive analytically the stability eigenvalues for long wavelength fluctuations. In the quiescent state we find an unstable varicose mode which corresponds to an instability towards coarsening. This mode is stabilized when an external shear flow is imposed on the fluid. The effect of the shear is seen to be qualitatively similar to that found in experiments.Comment: 13 pages, RevTeX, 8 eps figures included. Submitted to Phys. Rev.

    Collective modes of coupled phase oscillators with delayed coupling

    Get PDF
    We study the effects of delayed coupling on timing and pattern formation in spatially extended systems of dynamic oscillators. Starting from a discrete lattice of coupled oscillators, we derive a generic continuum theory for collective modes of long wavelength. We use this approach to study spatial phase profiles of cellular oscillators in the segmentation clock, a dynamic patterning system of vertebrate embryos. Collective wave patterns result from the interplay of coupling delays and moving boundary conditions. We show that the phase profiles of collective modes depend on coupling delays.Comment: 5 pages, 2 figure

    Hunting long-lived gluinos at the Pierre Auger Observatory

    Get PDF
    Eventual signals of split sypersymmetry in cosmic ray physics are analyzed in detail. The study focusses particularly on quasi-stable colorless R-hadrons originating through confinement of long-lived gluinos (with quarks, anti-quarks, and gluons) produced in pp collisions at astrophysical sources. Because of parton density requirements, the gluino has a momentum which is considerable smaller than the energy of the primary proton, and so production of heavy (mass ~ 500 GeV) R-hadrons requires powerful cosmic ray engines able to accelerate particles up to extreme energies, somewhat above 10^{13.6} GeV. Using a realistic Monte Carlo simulation with the AIRES engine, we study the main characteristics of the air showers triggered when one of these exotic hadrons impinges on a stationary nucleon of the Earth atmosphere. We show that R-hadron air showers present clear differences with respect to those initiated by standard particles. We use this shower characteristics to construct observables which may be used to distinguish long-lived gluinos at the Pierre Auger Observatory.Comment: 13 pages revtex, 9 eps figures. A ps version with high resolution figures is available at http://www.hep.physics.neu.edu/staff/doqui/rhadron_highres.p
    corecore