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ABSTRACT

A single mechanism is proposed as the dominant origin of energy-gap

narrowing in heavily doped emitter and back-surface-field regions. 	 The

mechamism, Coulomb forces resulting in the correlatRd motion of majority

carriers and screening by them, proposed before (by Sah), is here developed in

more detail. The aim is to aid the understanding of energy-gap narrowing, and

to provide a single formula for both heavily doped regions and also for

regions in which holes and electrons exist together in large numbers (highly

excited regions).	 Energy-gap narrowing influences conversion efficiency

mainly through its effects on the open-circuit voltage.

,
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I. INTRODUCTION AND EXECUTIVE SU14MARY

This report describes technical findings of work supported by contract

no. 956525 for the period, October 1, 1984 to December 31, 1984. Details of

the findings appear in the Appendix. 	 In this section, we briefly summarize

these findings and indicate their practical implications for solar-cell

design.

1.1 General Background

One of the tasks for this contract is the identification of key

parameters that describe heavily doped regions. This identification together

with an understanding of the associated physical mechanisms enables the

possibility of systematic design. From a performance standpoint, the heavy-

doping effects reduce the open-circuit voltage severely, thus also degrading

the fill factor. There is some influence also on the short-circuit current--

for short wavelengths from heavily doped emitters and for longer wavelengths

for a heavily doped back-surface-field region.

For the past ten years, energy-gap narrowing, commonly known in the

literature as band-gap narrowing, has been put forward as one of the key

parameters.	 It is known that the physical origin of band-gap narrowing is

complicated.	 The detailed many-body problem has received attention from

solid-state theorists. 	 Their final results differ because of different

approximations made in treating the quantum mechanical many-body problem.

Moreover, their results apply strictly at T = OK, where the states relating to

the impurity atoms are pure in the sense that they are not perturbed by

lattice vibrations.

To further complicate the problem, many solid-state theorists assume a

periodic distribution in space of the impurity atoms. 	 This ignores the

2
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thermal diffusion--a random-motion process--that contributes to the placement

of the impurity atoms in the lattice. Thus it ignores a random component of

the spatial distribution of these atoms.

On the other hand, other theorists emphasize this random component, which

leads to band-edge distortion. This falls into two catagories.

*band tails

*impurity bands

The band tails have significance at higher impurty concentrations, whereas the

impurity bands play a role for concentrations of the order of 1018/cm3.

Experimental evidence exists to support these claims.	 Some workers have

suggested recently that delocalized band tails or band tails having states

with relatively high mobility are largely the origin of the band-gap

shrinkage.

It is highly important to identify the mechanism underlying band-gap

narrowing.	 If one does not know the mechanism or mechanisms largely

responsible, efforts to design processing to yield high conversion efficiency

are frustrated.

1.2 Our Findings Reported Here (see Appendix for details)

We deal mainly with impurity concentrations above the order of

10 18/cm 3 . For such concentrations, experiment shows that the quantum density

of states follows nearly a standard quadratic dependence. The states in an

impurity band at lower concentrations move, for higher concentrations, into

the majority-carrier band. Band tails exist, but we have evidence to believe

F
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that they influence mostly transport of minority carriers and have only a

slight influence on the energy gap for concentrations of the order of

1019/cm3.

Our findings appear in detail in the Appendix, a manuscript written by

P.T. Landsberg, A. Neugroschel, F.A. Lindholm and C.T. Sah. A brief overview

follows.

	

A single mechanism is proposed as the dominant origin of energy-gap 	 {{

narrowing in heavily doped and highly excited regions of silicon devices (and

also of devices made of other semiconductors).	 The mechanism involves the

correlated motion of the electrons and holes resulting from Coulomb forces.

The resultant (Debye) screening reduces the energy of the system, thereby

reducing the energy gap. 	 In the literature, Sah first proposed this as the

one mechanism that could produce true energy gap narrowing--that is, energy

gap changes not arising from band edge distortion (bandtails and impurity

bands). Our work fills in the details of Sah's proposal and tries to correct

earlier attempts by others to develop a simple model involving screening.

In addition to the development, a survey of earlier experiments, and of

new ones obtained by us, is made. 	 The agreement between the model and 	

11experiments on n- and p-type silicon is good as far as transport measurements

near T = 300K are concerned. It is good in the sense that the discrepancies

between theory and experiment are no worse than the discrepancies between the

experimental results oil various authors.	 It also gives a good account of

recent optical (photolumine.sence) determinations of energy-gap shrinkage

at 5K.

The most general form of the result of energy-gap shrinkage appears in

Eq. (21) of the Appendix.	 For the degenerate limit, the model gives, in

gaussian units



AE  - 126.6(m*/m) 1/2 (e/10) ` 9(nii018 
) 1/6	 (3)

In regard to transport derived measurements of the energy-gap shrinkage, the

model agrees best with those interpretations that do not assume equal minority

and majority carrier mobilities. Elaboration on this remark appeared in the

preceding Quarterly Report to JPL.

i
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ABSTRACT

A model for bandyap shrinkage in semiconductors is developed and applied

to silicon. A survey of earlier experiments, and of new ones obtained by the

authors, give an agreement between the model and experiments on n- and p-type

silicon which is good as far as transport measurements in —300 K range by

various authors are concerned. In fact, the discrepancies between theory and

experiment are no worse than the discrepancies between the experimental

results of various authors.	 It also gives a good account of recent optical

determinations of band-gap shrinkage at 5 K.

The model is based on Debye screening and, apart from effective masses,

temperature, dielectric constant and carrier concentrations, which must enter

any theory of gap -shrinkage in some form, it is parameter-free. 	 The model

gives in gaussian units DEG = 126.6(m*/m) 1/2 (e/10) -3/2 (n/1U
18 ) 1/6

meV in the

degenerate limit.
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1. INTRODUCTION

There has been much discussion of the problem of band-yap shrinkage in

the recent literature. The problem is of considerable importance because the

band-gap is one of the key parameteri, in semiconductor devices. Heavy doping,

which leads to the effect, has been used increasingly as part of the drive

towards microminiaturization. However, key apects of the subject are still

controversial. , "Discrepancies in the values extracted from experiments" have

been noted [1]. At the theoretical level there are also serious discrepancies

which arise from the intrinsic complexities of many-body calculations and the

difficulty one has in estimating errors. -Some contributions to the band-gap

shrinkage are not agreed upon as regards sign, while other contributions are

estimated by some authors as large while others neglect them. We refer to

important recent papers [1-3] for more details and for developments of the

theory. Some time will clearly elapse before these matters are clarified, and

this justifies a search for other approaches which are lass ambitious but may

capture some aspect of the essence of the problem, and lead to an adequate

estimate. We pursue one such line here.

Three points are to be emphasized at the outset.

(i)	 Simple Useful Formula

Our main result for the band gap shrinkage AEG is equation (1), below.

We observe that this formula represents the experimental facts to good

approximation both at 5K (see Fig. 4) and at 300K (see Fig. 3). 	 Thus the

formula given can at the very least be regarded as a semi-empirical summary of

experimental results. 	 It may be expected to ,cover the experiments for the

whole temperature range 5K - 300K and beyond. 	 Section 4 discusses the

comparison with experiment. 	 The formula (1) applies to heavily doped

2

+.s3sfk-^-	 '<'°41 i'^'^'•.r.. .e usr+^-r'r w 4.u..^^'^.. 	 :__.	 ..y



,	 e	 1

semiconductors and to highly excited regions of semiconductors such as occur

either under strong irradiation or in the transition region of p-n junction

subjected to a large forward voltage. The formula thus meets the need of many
I	 •

experimentalists and device engineers who require a simple analytical

	

expression which can be introduced into other considerations that are 	
1'

sensitive to gap shrinkage. 	 The device work is normally conducted at room

temperature (while the rr, ry-body theories are worked out for T"0).

(ii) Jellium Model
r

	

What is the theoretical status of equation (1)7 For its derivation the 	 I

	charged ions of the solid both of the host atoms and of the impurity atoms are 	 j

it

	

imagined uniformly smearel out within the volume of the solid to supply a 	 i!

uniform background so that both hose and electron gases are electrically

neutral.	 This	 "Jellium" model of two gases of interacting electrons or holes

Is	 of	 course	 well-known. But also	 allowed to Le	 present are .neutral atoms

which, on bring ionized, can give rise to electron-hole pairs. The long-range

part of the Coulomb interactions leads to complicated and correlated motions

among the particles of the two gases (which one may consider separately). The

n-particle wavefunctions for these systems are not known. 	 However, it is

reasonable to assume that these correlations leave the short-range part of the

interactions more or less intact, thus leading to short-range or screened

potentials acting between largely independent particles, (the quasi-particles).

The screening parameter (equation (21), below) takes account of this

situation.	 In such a model, interactions with ions, band structure, location

of impurities, inter-valley scattering, etc. are clearly neglected. Even in	

IT=0 many-body theories, however, these are problems whose importance has not

yet been ascertained with certainty. 	 Thus inter-valley scattering was

3
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emphasized in [1], but la ,aly ignored in [4], while the magnitude of the

effect of impue • cy scattering on band gap shrinkage is also not certain

[2,4].	 Other unsettled questions of current research which arise in these

treatments include questions of linear versus non-linear screening [3] or

ordered versus disordered impurities on a lattice [1-3]. By ignoring these

questions here we merely follow through the j ellium (or screening) model.

Our procedure has great simplicity, and it is ahso highly approximate,

and so does not compete with the much more sophisticated many-body theories.

These are of necessity limited to T=UK at the present time, and so do not

yield as yet what is needed by experimentalists. 	 It is crucial to observe

that we do not ignore these recent advances, [1-3]. Instead, we seek a direct

and intuitive route to a formula which, while approximate, is likely to be

useful.	 In fact, our paper represents a challenge, in that equation (1)

should be deducible from many-body theories by appropriate approximations.

In our derivation vie go back to the 0ebye-Huckel theory of electrolytes,

as expounded by 14. J. Moore [5] and as used in a related context by Morin and

Maita [6] in a standard paper.	 Some generalizations of this early work

'	 (section 2) enable one to give the simple derivation required (section 3).

(iii) Earlier Related Work

Equation (1) has appeared before. Inkson [7] obtains it as his component

LE M and in the review [8] it appears similarly as equation (3.13). Equa-

tion (1) was also used by Sah and collaborators [9] to discuss experimental

results.	 On the other hand similarly simple formulae, but different in

essential details, appear elsewhere [10-12]. 	 In the present paper it is

however, given a central status and it is obtained by a simple derivation for

the first time.

,
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xi _ 4ne2 (n + p)/ekT

5

(2)
	 i

or

where

(3)

(4)

-00

Our formula yields a larger value for AE G for degenerate material than

does the work [12]. The factor is of order 1.33 and can be quite significant:

A typical difference is 200 meV compared with 16U meV. The difference in the

coefficients is due to the following circumstance. Both here and in [12] 'Mr,4

gap narrowing is attributed to a drop in an energy, X say, in the presence of

screening by carriers, as against the energy X in the absence of screening.

The energy X used for this purpose in [12] is the -energy stored in the

field.	 As it is not obvious that this is the best choice, vie chose in this

paper for X the energy needed to create and separate an additional electron-

hola pair without imparting kinetic energy to either particle. This seems to

correspond rather directly to the energy gap concept.	 The results differ

therefore because the models differ in an important point of detail.

2. THE MORIN-MALTA FORMULA

lv:	 o mnence with a discussion of the formula to be used for band-gap

shrlikage. it is

AEU = e2%/ e 	 (1)

where	 a	 is the	 numerical value	 of the	 electron	 charge,	 a	 is	 an	 appropriate

dielectric constant of the material and
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The qua:tity (3) is essentially the Debye screening parameter. In [9] the 14KS

(S.I.) system was used, which has here been changed to c.g.s. ( Gaussian)

system by replacing the dielectric constant relative to vacuum by ej4n. The

discrepancy between (2) and (3) will now be explained.

Suppose the electrostatic potential due to a charge a can be written

^(e,r) = b(r)e

where b is typically 1!t:r, but can have other values (see equation (10),

below). The electrostatic energy due to another charge e' at the appropriate

point in this field is clearly bee', or for e' = e,

U(e,r) s e^(e,r) = b(r)e 2 	(5)

This is all that is needed to obtain the energy of the charge a in the

potential 6(e,r).	 The connection between U and AE G is made in equation

(14).

In [6] the energy calculation is approached by estimating the work done

in charging an ion reversibly in its appropriate position r up to its total

charge e. This is taken to be

V(e,r)	 q fe q dm( q ,r) =
11 	 e

 q fo ^(q,r)d^(q,r) _ [^(enrr] z = u(e

U

(6)

It was overlooked that this answer is half that which one would expect since

it is assumed that the potential b(r)e also starts from zero, thus lowering

the energy V below what it should be.

,



In Moore's treatment

b(r) = X/e (inaependent of r)
	

(7)

and it is obtained by splitting the normal Coulomb potential off the screened

Coulomb potential:

er exP(-^r) = eF - eE
	

(8)

The first term is the potential at distance r.due to a charge a in a medium of

dielectric constant e. The second term is the potential due to the other ions

in the electrolyte or semiconductor. The energy (5) or (6) (depending on what

one wants to calculate) then gives a reduction which takes into account the

electrostatic interaction among the current carriers. In [6] the combination

of equations (2), (5) and (7) was taken to lead to the band-gap shrinkage

(I).	 This was done by simply citing reference [5] where the second tern in

equation (8) was inserted in a free energy. Morin and Maita interpreted this

as a change in chemical potential and hence in energy gap, and so applied the

result as a correction to the np-product. The job was done in nine lines of

text.

It is useful, in order to bring out the semiconductor physics involved

more explicitly, to indicate first a generalization of . the above argument.

One need not expand the exponent as in (8). It is perfectly valid to replace

(8) by the exact result

(e/er) exp(-Xr) = e/er - ( e/er)[I - exp(-Xr)]	 (g)

7
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The second term of	 (9)	 has	 the	 same	 interpretation	 as	 the	 second	 term	 in

(4). Th,.s (7)	 is replaced by

b(r) = CI - exp(-rr)]/er	 (10)

The generalized and corrected [for the factor 1/2 in (2)] 14orin-Maita band-gap

shrinkage is, using (10) in (5),

U(e,r) = (e 2/er)[1 - exp(-Xr)]	 (11)

It depends on the distance r from the given charge for which the band

shrinkage calculation is made.

The introduction of concepts from electrochemistry C13] is not helpful

for the present purposes, as it tends to distract from the essentials of the

argument.

3. THE PRESENT MODEL

We continue to focus our attention on formula (1), with a view to

arriving at it by a direct path suitable for semiconductor work. The first

step now is to create in the jellium an electron-hole pair which is in a bound

state for a very short time. The distance, a say, between the maxima of their

wave packets is of the order of an Angstrom, so that the effect of the smeared

out electron and hole densities will not affect the energy, W say, to create

the pair.	 The normal Coulomb potential acts between the particles for r > a

and is cut off at r = a. 	 Such cut-offs are often needed for small r as the

Coulomb potential diverges as r + 0. Imagine now the hole to be fixed at its

instantaneous position, r = 0 say, and the electron to be removed to infinity

8



against the Coulomb attraction starting at the cut-off distance.	 (Alterna-

tively one may regard the origin of the coordinate system to move with the

hole.) As remarked in section 1, the ,)ellium consists of quasi-particles with

short-range, or screened, potentials acting between them. 	 The screening

parameter (of equation (3)) is approximated as a constant (it really depends

on the wave vectors involved in the Coulombic collisions).	 With these

approximations the total energy supplied to create the pair, and to separate

it, is (Fig. 1)

EG(n,p) = W + (e2/Ea),.xp(-%a)
	

(12)

This quantity is interpreted as the minimum energy between a hole in the

valence and an electron in the conduction band, where n,p are the carrier

concentrations.	 We thus exlude the Burstein-Moss shift and use E G in the

sense of Egap 2 of Mahan [3].	 If the semiconductor is highly nondegenerate,

then screening can be neglected and (12) yields

E G (0,0) = W + ( e2/ Ea )	 (13)

As already explained, W and a are to be approximated as concentration-

independent. By subtraction,

AEG = EG ( 0 > 0 ) - EG (n, p ) = (e 2/ea)[1 - exp(-ra)] [= U ( e , a )]	 • (14)

Thus one does indeed arrive at expression (11), but it is now rather more

firmly linked to semiconductor concepts, a link having been established in the

form DEG = U(e,a).	 Using Oebye or Thomas-Fermi screening g ives the same

result in the limit of extreme de g eneracy; namely for n + material

9
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1/3 4e 
2m	

1/3
^2	 (n)	

end n
	 i.e.	 (15)

1/2
mn/m	 n 

I/6	
1	 n 

I/6	
1

a = (^)	 [1^IX]	 x 0.0863 A - [= 0.08( 10 )	 A for Si](16)

with e = 11.7 and for in n = m, where inn is the density-of -states effective mass

for electrons.

The approximation

exp(-xa) — 1 - %a	 (17)

i

requires the constraint X.a < z where z — 1/4 (see Appendix). Hence from (16)

a < (F—/m/m)/2 

(lUnB	 /6

)1/6 11.59z A [= 12.53z[ lO_ 	A for Si.]
n

For n — 1020 cm -3 in Si, one has X = 0.17A -I and a < 1.45 A if z — 1/4A.

Adopting (17), one finally obtains equation (1) from equation (14).

Numerically, (1) and (15) yield

m /m 
I/2	

1/6
DEG = 126.6 C- ^'— ^]	 C--' 3	 meV	 (18)

(e/10)	 10

where n is in cm-3 .	 For silicon with e = 11.7 and M  = m, this gives

AE G — 215 meV at n — 10 20 cm -3 . In fact, one, can put, using e = 11.7 for

silicon,

10



	

AE0 - 215(mr^/m)1/2[ L0]1/5 mev	 (19)
10	 d

As noted in section 1, this is 1.33 times larger than a similar formula given

by Lanyon and Tuft [12] for the degenerate limit.	 I' a
4i

	Although the band-gap shrinkage has been determined in (14) in terms of a	 '!

	

—	 I

and %, a more sophisticated theory is needed to estimate a. The importance of—

	a arises from the fact that it determines the relative contributions of the	 {I '
I

two terms in (12) and (13). The beauty of the present treatment is that no

commitment needs to be made as regards the numerical value of 0 . The reason
,	 1

is that we need only (14) from which a cancels if (17) holds, so that the

actual value of a, which enters only (12) and (13), is not required.

The ratio of the two terms in (13) is

2	 eaE (0,0)	 -1

e

A divergence in R occurs when a is so small that W = 0. So a must be large

enough to keep R finite. For n — 10 20 cm-3 the limiting value of a is given

by a z 1.2 A for silicon.	 On the other hand, it must by virtue of (17) be

small enough for ka < z, i.e. R must lie above the minimum value determined

by z/x a n 1/5 . Thus one can draw a curve such that, for given n, all finite

R-values lying	 above this curve are	 permitted	 and all those lying below the

curve are forbidden. This curve is	 shown	 in	 Fig.	 2 for, Si	 and for z =	 1/4. It

shows that the theory holds for a very wide range of possibilities as regards

the relative contributions of the two terms in (13). For n » 10 20 cm-3 a must

be less than about 1.5 A.

I
The fact that the two quoted values of a lie well within the interatomic

distance in silicon (5.42 A) makes the model internally consistent in the

11
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sense that one does not expect screening to be of importance for distances

smaller than the interatomic distance.

The ratio of the two terms in (12) is

R' _ (e 2/Ea)exa(-Xa) 4 R
W

Hence if R can lie above a certain value for given electron concentration n,

then the freedom for R' is even greater in that it cars assume any value above

a smaller number.

In the Appendix it is shown that the theory begins to fail unless the

electron concentration lies below a critical value which is

nc — 4 x 1020 cm-3

in the case of Si.

The general screening length must make allowance for electrons and holes

and has many interconnectiors with other parts of physics [14]. One finds for

a parabolic band

2	 2	 1/2

DEG - 
e e iEkT CNcF-1/2(Yc) + Nv F -1/2 (Y v )]}	 f,21)

where CF	
1/2

_ (1//n) U f { x-1/2 /C 1 + exp (x- a )]dx) and Yc =_ ( F - Ec)/kT,yv

(E v - F)/kT and F is the Fermi level. 	 It is this formula which will be

adopted here for all concentrations of holes and electrons.

4. COMPARISON WITH EXPERIMENT

Energy-gap	 shrinkage AE G obtained	 from our previous	 transport

measurements on Si :As n-type layers at — 340 K [15] are shown in Fig. 3 as

12
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full circles.	 A new result, obtained here, for Si:8 p-type layers from

transport measurements is shown as a full triangle. 	 This new result oas

obtained	 using	 a	 p+-n-p	 transistor	 with	 uniformly	 doped

(NA - 5 x 10 19 cm 3 ) 0,2 pm thick emitter. 	 The measurement method was the

same as in [15]. The data was obtained in the range 320-380 K, Assuming DEG

to be fairly temperature-independent in this range, it seemed reasonable to

associate it with 340 K. The curve is based on our model, equation (21), and

gives good agreement for	 mn /m = mp /m = 1.1	 and a majority carrier

concentration n or p N 5 x 10 19 cm-3.

For lower concentrations our model underestimates AE G .	 This is to be

expected since the impurity band or tail electrons contribute to the

screening, so that our estimate of X in (21) is expected to be an

underestimate. At the concentrations well above 10 19 cm -3 the impurity band

is absorbed in the conduction band and one can return to a parabolic band.

This sudden change near the metal-insulator transition has been noticed for

many other physical parameters [16].

In much of the literature Boltzmann statistics has been used to infer AEG

even if the semiconductor was degenerate. These data have been recalculated

so as to isolate band-gap shrinkage and remove the effect of degeneracy.

The results are shown in Fig. 3 and compared with equation (21).	 The

experimental points are rather dispersed, but the general agreement is quite

good. One reason for the deviations maybe that some of the transport data in

Fig. 3 were obtained from regions with nonuniform doping and the values of AEG

reported are for the average doping concentration which is generally different

from AEG for the uniformly doped samples.	 ,The reason for this is that

non-uniform doping ,gives rise to quasi-electric fields which leads to

additional drift. In some other cases errors may have been introduced in the

13



evaluation of AE G by the use of geometrical corrections to the one-dimensional

model .

The agreement between the model and experiment approaches the agreement

between different experiments, and so can be regarded as satisfatory. It is

marginally better for the high concentrations (> 5 x 10 19 cm -3 ) which are of

the greatest practical importance for the heavily-doped regions of the

emitters in bipolar transistors, in solar cells and In other semiconductor

devices.

The experimental estimate	 of AEG by other workers tends to be somewhat

smaller than	 ours	 for concentrations larger	 than	 about 5	 x 10 19 cm-3 .	 The

reasons for this difference were discussed in detail elsewhere [23,24], but

they are briefly repeated here.	 The AE G comes from the measured minority-

carrier current which is a function of a product p[exp(AE G/kT)], where p. is a

minority-carrier mobility. Now if one uses a conventional assumption that the

minority and majority carrier mobilities are identical, then one obtains AEG

as reported by others and shown in Fig. 3. 	 In contrast our analysis [15]

assumes only a temperature independence of µ in the measurement range, but it

does not assume the magnitude of p., which is not well known [8,23,24]. Thus

our interpretation of the transport data is more physical. 	 The agreement

between our transport data for the degenerate concentration range and the

theory is excellent.

Wagner's recent 5 K photoluminescence and photoluminescence excitation

data [25] are shown in Fig. 4.	 N- and p-type material appear to lie on the

same curve of bandgap shrinkage against concentration. This suggests that at

this	 temperature	 the optical	 characteristics are insensitive to this

difference.	 We have therefore compared experiment with three theoretical

curves based on (21), using the non-committal symbol m* for electron and hole

14



effective mass.	 The actual values for heavily-doped silicon are not well

known [16,26], but those for intrinsic silicon at 6 K are inn/in = 1.06 and

mp/m = 0.69 [26]. These values have been included in the figure, though the

best value for agreement with experiment is m*/m = 0.45.

Some 2.4 K photoluminescence experiments have recently been used to infer

the bandgap shrinkage appropriate to 300 K [27,28]. This data, corrected for

Fermi-Dirac statistics, is given in Fig. S. 	 For intrinsic silicon at 300 K	 j

the effective masses of electrons and holes are m*/m — 1.1 [9,15,24].

Although the effective masses for heavily-doped silicon at this temperature

are again not well-known, the model is seen to give satisfactory agreement for

m*/m = I.I.	 The transport data (Fig. 3) also shows good agreement between

theory and experiment at —340 K for m*/m — 1.1. 	 The optical absorption
^	

7
experiments [30-32] have not been included in Figs. 6 and 6 as it is suggested

that they underestimate AE G [25].	
1

Lastly we wish to point out that the band-gap shrinkage in doped material
r

has important contributions from one band only; the screening parameter K 	 ppg

depends then on one concentration. For high optical excitation, however, both 	 t`

electrons and holes contribute to the screening parameters, which is thus

substantially increased (see equation (21)).	 This results in a larger band-

gap shrinkage, if the effects of any impurity-bands or tail states are

neglected. This is illustrated in Fig. 6 which predicts the order of magnitude 	
t

1

of expected experimental results. Figure 6 also shows the theoretical AE G for

n-type GaAs.	 This is notably smaller than for Si since (mn)GaAs/(f°n)Si

0.066/1.1. The relevant experimental data is based on optical absorption (for

a review see [81) and is therefore not expected to be reliable. 	 It is not

shown in Fig. 6.
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I

5. CONCLUSION

A model of band-gap shrinkage in semiconductors has been developed. Its

application to n- or p-type silicon gives good agreement with both transport

and optical measurements at 5 K and in the range 320 . 380 K. The discrepancies

between theory and experiment are on the whole no greater than the

discrepancies inherent in the experimental determinations. Our model would be

expected to underestimate AE G in the non-degenerate regime. 	 Hare the

impurity-band and tail states are not merged with the majority band, and their

contribution to gap shrinkage is not included in the model.

The model outlined has two attractive features:

(i) As it does not compete with models based on many-body theory it

cannot claim to be as fundamental as other models recently

proposed.	 But the benefit arising from this is its great

	

simplicity. It can be applied to over a range of temperatures and 	 1

carrier concentrations with considerable ease.

(ii) It is essentially parameter-free. 	 The only variables which enter	 t
4

are those which must be involved in any theory of band-gap

shrinkage:	 effective masses, temperature, carrier concentrations

and dielectric constant.	 (The latter would enter a many-body 	

{

treatment in a different manner as a sum over electronic

transitions.)
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APPENDIX: CONSTRAINTS ON THE MODEL
I

In order not to introduce the parameter a into the band-gap shrinkage

formula, it is necessary to satisfy (17). Now the error introduced in putting
r	 .

e-1.a tt 1 _ ^a	 I

has the followi ng values	 'I

%a	 0.1	 0.2	 0.3

error	 0.6	 2.4	 5.9

Let us put the requirement 	 {,

%a < z (z - 0.25)

on the model	 rte also have from (13) that

EG ( O ,0) > e 2 /ca

It then follows that

X < z/a < ze EG(o,o)/e 
2	1.)

Some algebra now shows, using the degenerate limit, that one requires 	

} ;{

1/6	 1/6 _ z	 3/2 (7t 
1/6 

(e/10)
3/2 	 EG(0,0)

q

n	 < n	 lUc =	 (mn
/m) 

r^,Z Ioa—rjg

Here I o is 13.6 eV and a o = 0.529 A is the Bohr radius.	 The critical

concentration is

n= (e/10)9 (4z) 6 E 6 x 0.659 x 102U CM"

	

c	
(inn/m)3
	 G	 .

	

17	 1^



where Eu is expressed in eV. Using c a 11.7 and E0 Q 1.1 eV, the constrar

is for silicon

6
n < n a	 4z) 4.80 x 10 20 cm-3

C 
(Inn/m)

"r
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FIGURE CAPTIONS

Fig. 1 Schematic diagram showing the decomposition of the band-gap energy

into W and the work done against attraction. More carriers are

assumed present for curve 1 than for curve 2.

Fig. 2 A plot of R (equation (20)) against electron concentration n for

Si. The values of R below the curve are ; forbidden in the present

approximation, which begins to fail nea r n —„n c = 4 Ix 1020 cm-3.

Fig.	 3	 Gap	 shrinkage AEG as inferred	 from transport measurements	 for n-type

layers	 from	 various sources	 at	 a mean	 temperat !,ore	 of —340 K.	 The

curves are based on equation	 (21), the upper curve is for m*/m =	 1.45

[10],	 the lower curve is	 for m*/m =	 1.10,	 and	 e =	 11.7	 (Si)	 has also

been	 used.	 The horizontal axis	 is	 the	 majority carrier

concentration.

Fig. 4	 Comparison of (21) with recent optical data at 5 K [217.

Fig. 5 Comparison of (21) with recent photoemission data at 300 K [23,24].

The data from [23,24] were corrected for degeneracy, as described in

the text.

Fig.	 6	 Comparison	 of	 two theoretical curves	 for	 Si	 at 300	 K	 based	 on

equation	 (21).	 The lower curve applies	 to	 doped	 n-type	 silicon	 with

mn/m	 =	 1.45	 [10]. The	 upper curve	 applied	 to intrinsic	 excited

silicon	 with	 n	 =	 p, inn/In	 =	 1.45	 and	 mp/m	 =	
1.08. Also	 shown,	 for

comparison,	 is	 a theoretical	 curve	 for n-type GaAs with mn /m = 0.066

and e =	 12.5.
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