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We study the effects of delayed coupling on timing and pattern formation in spatially extended
systems of dynamic oscillators. Starting from a discrete lattice of coupled oscillators, we derive a
generic continuum theory for collective modes of long wavelength. We use this approach to study
spatial phase profiles of cellular oscillators in the segmentation clock, a dynamic patterning system
of vertebrate embryos. Collective wave patterns result from the interplay of coupling delays and
moving boundary conditions. We show that the phase profiles of collective modes depend on coupling
delays.

PACS numbers: 05.45.Xt, 02.30.Ks, 87.18.Hf

In complex dynamical systems interactions between dif-
ferent elements can give rise to dynamical order and
spatio-temporal patterning [1–3]. These interactions can
themselves be the result of a complex process. Therefore
coupling can have internal dynamics that involve time
delays. The importance of time delays in the coupling
of oscillators was first recognized by Schuster and Wag-
ner [4], who showed that two oscillators can entrain even
if coupling is delayed. In this case, multistability of dy-
namic states can occur as a consequence of time delays
and the collective frequency of the system depends on
the delay time. The roles of time delays have been ad-
dressed in studies of different oscillator systems. It was
found that coupling delays can give rise to a rich variety
of behaviors [5–12].

Significant time delays in the coupling of oscillators oc-
cur in many systems in biology, engineering and physics.
Coupling delays between a sending and a receiving ele-
ment can arise due to (i) intrinsic times of signal gener-
ation in the sending element, (ii) the finite propagation
velocity of signals, and (iii) the slow signal processing of
the receiving element. Coupling delays of type (ii) are in-
evitable in some engineered systems [13–17] and neuronal
systems [18–21]. In some cases such delays can be used
to implement control schemes [22, 23]. In the context of
signaling processes between biological cells [24–26], cou-
pling delays of type (i) and (iii) occur naturally because
of the complex internal kinetics of intercellular signaling.

An important biological example in which the delayed
coupling of dynamic oscillators plays a key role for the
formation of patterns is the the so-called segmentation
clock [27, 28]. This system operates during embryonic
development of all vertebrate animals, generating a seg-
mented morphology along the vertebrate body axis of the
embryo. These segments, called somites, are the embry-
onic precursors of adult vertebrae. Somites are formed
sequentially in a dynamic tissue which elongates during
the process. The segmentation clock is thus a rhyth-

mic pattern generator in the tissue resulting from the
collective organization of many cells. Each cell is an au-
tonomous oscillator with time-periodic activation of cer-
tain genes [24, 29]. These oscillators are noisy and are
coordinated by intercellular signaling [30].

It was recently suggested that coupling delays between
genetic oscillators play an important role for the dynam-
ics of the segmentation process and that they influence
the collective frequency of cellular oscillations [31]. By
comparing theory with quantitative experiments in fish
embryos it was subsequently shown that coupling delays
indeed play a crucial role in pattern formation and that
the collective oscillation frequency is altered in fish with
mutations affecting the coupling process between oscil-
lators [32]. The segmentation clock is therefore a prime
example of a population of coupled oscillators in which
coupling delays play a crucial role. Its understanding re-
quires a theory of locally coupled oscillators with delays
in a spatially extended system.

Despite their general interest, the effects of coupling
delays in spatially extended systems are still poorly un-
derstood. It has been shown, using a low dimensional
approximation [33], that such systems can display a wide
range of spatiotemporal patterns [34]. An important ap-
proach to describe spatially extended systems is to focus
on long-wavelength modes, which can be described by a
simplified continuum limit which ignores details on small
scales. Continuum descriptions have been developed for
chains of coupled phase oscillators without delay [35, 36]
and for rings of coupled phase oscillators in the limit of
short delay time [15]. It was shown that short time delays
are equivalent to a phase shift in the coupling [37, 38].
This simplification is lost when coupling delays are longer
than the time scale defined by the coupling strength. In
this case time delays have to be considered explicitly [38].

In this Letter, we study the collective oscillatory modes
of the vertebrate segmentation clock. We introduce a
generic continuum description for the long wavelength
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modes of spatially extended lattices of coupled oscillators
with arbitrary coupling delays. We use this theory to
discuss the emergent collective frequency, as well as phase
profiles of collective modes.

The vertebrate segmentation clock is a tissue level pat-
tern generator [27]. It consists of a population of cells
that collectively generate oscillating activity patterns of
cyclic genes in the tissue. Neighboring cells are cou-
pled via a slow molecular signaling system that intro-
duces time delays [31, 32]. Thus, we consider a system
of coupled oscillators defined on a regular d-dimensional
hypercubic lattice with lattice spacing a. Oscillators sit
on lattice sites with position xi = ai with i = (i1, .., id),
in ∈ Z. The evolution equation for the phase θi of the
oscillator i, coupled to its nearest neighbors j, is

dθi(t)
dt

= ωi +
εi
2d

∑
|j−i|=1

h(θj(t− τ)− θi(t)) , (1)

where ωi is the intrinsic frequency of the oscillator i, εi de-
notes the coupling strength of this oscillator to its neigh-
bors, and τ > 0 is a time delay in the coupling. The
coupling is described by the 2π-periodic function h.

We are interested in long wavelength collective modes,
for which the phases θi vary smoothly over distances that
are long compared to the lattice spacing a [35]. We as-
sume that intrinsic frequency and coupling vary smoothly
in space so as to fulfill this condition. In this situation,
we can approximate the phases of the oscillators in the
discrete system by a continuum phase field θ(x, t). In
the following we derive an equation for θ(x, t), which
describes the long wavelength dynamics of the discrete
Eq. (1). To simplify the notation, we derive the contin-
uum theory on a one-dimensional lattice. The general-
ization to higher dimensions is straightforward. We first
perform a Taylor expansion of the coupling function h in
Eq. (1) in powers of a, assuming that a/` � 1, where
` ' (∂θ/∂x)−1 is a characteristic wavelength of the col-
lective mode,

h(∆±τ ) = h(∆τ )± h′(∆τ )
∂θτ
∂x

a (2)

+
1
2

[
h′′(∆τ )

(
∂θτ
∂x

)2

+ h′(∆τ )
∂2θτ
∂x2

]
a2 +O(a3) .

The prime denotes the derivative of h with respect to its
argument, and we have defined

∆±τ (x, t) ≡ θ(x± a, t− τ)− θ(x, t) (3)
∆τ (x, t) ≡ θ(x, t− τ)− θ(x, t) (4)
θτ (x, t) ≡ θ(x, t− τ) . (5)

Introducing continuum functions ω(x) and ε(x) of the in-
trinsic frequency and coupling strength of the oscillators,
together with Eq. (2), we obtain a continuum description.

The phase field obeys

∂θ(x, t)
∂t

= ω(x) + ε(x)h(∆τ (x, t))

+
ε(x)a2

2
h′′(∆τ (x, t))

(
∂θ(x, t− τ)

∂x

)2

+
ε(x)a2

2
h′(∆τ (x, t))

∂2θ(x, t− τ)
∂x2

.

(6)

Note that the first order contribution in a vanishes.
Higher order terms can be neglected in the long wave-
length limit and have been dropped here.

For arbitrary dimension we find

∂θ(x, t)
∂t

= ω(x) + ε(x)h(θ(x, t− τ)− θ(x, t))

+
ε(x)a2

2d
h′′ (θ(x, t− τ)− θ(x, t)) (∇θ(x, t− τ))2

+
ε(x)a2

2d
h′ (θ(x, t− τ)− θ(x, t)) ∇2θ(x, t− τ) ,

(7)

where x ∈ Rd is a position vector in d-dimensional space.
The coupling delay τ enters in the spatial derivatives of
the phase field, as well as in the arguments of the cou-
pling function and its derivatives. For a vanishing delay,
τ = 0, we recover the classical case of locally coupled
oscillators [35]. Eq. (7) describes the collective modes
of general extended systems of oscillators with coupling
delays.

We now employ our approach to describe gene activity
patterns of cells in the segmentation clock of vertebrate
embryos. We simplify our description of the segmen-
tation process by using a semi-infinite one-dimensional
geometry, Fig. 1, in which a system of oscillators is de-
scribed by Eq. (6). The system in which oscillators cre-
ate patterns extends from the anterior for x → −∞ to
a posterior boundary at xp(t) = x0 + vt. This moving
boundary describes the elongating tip of the tissue. Here
v is the elongation velocity of the tissue and v/a is the
rate at which cells are added at the extending end. In
the following we choose x0 = 0 without loss of generality.

In the segmentation clock, concentration gradients of
signaling molecules exist across the tissue. The source
of these gradients is located at the tip of the elongating
tissue, and the resulting concentration gradients move
together with the tip. Perturbations of these molecu-
lar gradients produce effects consistent with alteration of
the intrinsic frequency of the cellular oscillators [39, 40].
Motivated by these observations, the spatial profiles ω(x)
and ε(x) are assumed to depend only on the distance d =
xp−x from the elongating tip [31, 41–44], i.e. they travel
together with the moving boundary. Therefore, we intro-
duce a reference frame co-moving with the tip boundary,
where the frequency and coupling strength profiles are
stationary. We define the coordinate y = x − vt and
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the co-moving phase field ϑ(y, t) = θ(y + vt, t). Since
d = xp − x = −y, the functions ε(y) and ω(y) are time-
independent. We assume that these functions take max-
imal values ω(0) = ω0 and ε(0) = ε0 at y = 0, that they
decay monotonously and vanish in the limit y → −∞.

The fact that both ε(y) and ω(y) vanish for large neg-
ative y implies, according to Eq. (6), that the pattern
θ(x, t) becomes stationary for x→ −∞, i.e. ∂θ/∂t ' 0 in
this limit. This stationary pattern describes the develop-
ing segments. Pattern forming solutions can be obtained
by the ansatz

ϑ(y, t) = φ(y) + Ωt . (8)

Using this expression, the differential equation for the
phase profile reads for y < 0

Ω = vφ′(y) + ω(y) + ε(y)h(φ(y + vτ)− φ(y)− Ωτ)

+
ε(y)a2

2
h′′ (φ(y + vτ)− φ(y)− Ωτ) (φ′(y + vτ))2

+
ε(y)a2

2
h′ (φ(y + vτ)− φ(y)− Ωτ)φ′′(y + vτ) .

(9)

The first term in Eq. (9) is a drift describing phase trans-
port due to the motion of oscillators in the co-moving
system. The moving boundary and the co-moving pro-
files of ε and ω, together with coupling delays, introduce
non-local effects in Eq. (9).

Eq. (9) is solved imposing boundary conditions at the
moving tip, y = 0. Because of the nonlocal terms in-
volving oscillators at y + vτ in Eq. (9), the boundary
values of φ(0), φ′(0) and φ′′(0) are not sufficient to de-
termine the solution. Rather, it is necessary to specify
the function φ(y) in the interval 0 ≤ y ≤ vτ . This nonlo-
cal boundary condition reflects the fact that the history
of oscillators that are attached to the end is important.
This history is specified by this boundary condition. We
choose φ(y) = φ0 for y ≥ 0 as well as φ′(0) = 0 and
φ′′(0) = 0. This choice corresponds to the assumption
that all oscillators that enter the system at the tip os-
cillate with intrinsic frequency ω0 and are coupled with
strength ε0, being in phase with their neighbors, Fig. 1
(red).

Eq. (9) together with these boundary conditions imply
that the collective frequency Ω obeys

Ω = ω0 + ε0h (−Ωτ) . (10)

This transcendental equation is known to determine the
collective frequency Ω in a population of identical oscil-
lators. It can have one or several coexisting solutions for
the collective frequency [4, 6, 45].

The solutions of Eq. (9) with the boundary conditions
imposed here, describe a dynamic biological pattern gen-
erator that oscillates with collective frequency ∂ϑ/∂t = Ω
and produces a stationary spatially periodic structure

x

ω0

xp(t) = v t
posterior boundary

v

frequency pro�le

anterior

homogeneous
frequency

FIG. 1: One dimensional lattice of coupled oscillators repre-
senting the segmentation clock with a frequency profile (blue)
and posterior boundary at position xp moving with velocity
v (red). The oscillators self-organize in a phase pattern. The
frequency profile starts at the posterior boundary with value
ω0 and drops to zero as x→ −∞.

of length S described by sin(θ(x)) ' sin(2πx/S). It is
formed by the collective mode of coupled oscillators that
corresponds to traveling waves induced at the moving
tip that propagate towards the anterior where they slow
down and stop. From Eq. (9), we find φ(y) ' yΩ/v in the
limit y → −∞ in which both ω and ε vanish, implying

S = vT , (11)

where T = 2π/Ω is the collective period. This result
shows that we recover the basic property of a general
clock and wavefront mechanism of vertebrate segmenta-
tion [27, 46]. The segment length S depends only on the
elongation velocity and the collective frequency of the
oscillators at the posterior boundary. It is independent
of the shapes of the profiles of frequency and coupling
strength.

Solutions to Eq. (9) for boundary conditions given
above are displayed in Fig. 2 (lines) for two different
time delays. As an example, realistic parameters pre-
viously determined for the zebrafish segmentation clock
have been used, including typical profiles of the functions
ε(x) and ω(x) [32]. These profiles and parameter values
are given in the caption of Fig. 2. These solutions are
compared to simulations of the discrete oscillator system
Eq. (1) with the same parameters (dots). The compari-
son shows that our continuum theory provides an excel-
lent approximation for the behavior of the discrete sys-
tem. We have checked that small perturbations to the
discrete patterns relax back to the time-periodic states
shown in Fig. 2, indicating that these patterns are lo-
cally stable.

Fig. 2 also highlights the role of coupling delays in
shaping the phase patterns. The solid black line shows
the phase profile for a time delay of τ = 20.75 min [32],
while the dashed line was obtained for τ = 44.35 min
keeping other parameters the same. Thus, the value of
τ in both cases differs by the collective period T = 23.5
min. Note that Eq. (10), which determines T , is invariant
under the transformation τ → τ + mT for any integer
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FIG. 2: Phase profiles of coupled oscillators with delayed cou-
pling for the segmentation oscillator. Upper panel: plots of
sinφ(y) corresponding to the phase profiles in the lower panel,
illustrating cyclic gene expression patterns in vertebrate seg-
mentation. Both simulations have the same collective period
T and elongation velocity v, making the resulting segment
length S equal in both. Lower panel: steady state phase pro-
files φ(y) in the co-moving frame obtained from the continuum
approximation Eq. (9) (lines), and numerical simulations of
the discrete model given by Eq. (1) (dots). We use parameters
previously determined for the zebrafish segmentation clock
[32], resulting in a collective period T = 23.5 min for both
cases. The coupling function is h(∆) = sin(∆). Boundary
condition is φ(y)|y≥0 = const. The time units are minutes
and the unit of length a corresponds to one cell diameter,
a ≈ 10 µm. Only every second discrete oscillator is dis-
played, and the arrested oscillators to the left of y = −39 are
not shown. Parameters are: v = 0.249 cell diameters/min,
ε(y) = ε0 for y ≥ −39, with ε0 = 0.07 min−1, ε(y) = 0 min−1

for y < −39, ω(y) = ω0(1 − e−(y+39)/27)/(1 − e−39/27) for
−39 ≤ y ≤ 0, with ω0 = 0.2205 min−1, ω(y) = 0 min−1 for
y < −39 and ω(y) = ω0 for y > 0. The biological motivation
of the choice of ε(y) and ω(y) is discussed in [31].

m. As a consequence, the two systems shown in Fig.
2 oscillate with the same period. However, the phase
profiles of these solutions differ because Eq. (9) is not
invariant under this transformation. This effect may offer
a way to distinguish between different coupling delays
producing the same period in the segmentation clock, by
means of phase profile data. The shape of the observed
pattern does not change when we introduce a white noise
term to the discrete model Eq. (1).

Our theory can account for several observed proper-
ties of the segmentation clock. First, we showed that the
simple clock and wavefront relation S = vT [27, 46, 47]
between segment length S, elongation velocity v and os-
cillation period T , holds under very general conditions of
frequency profiles, time delays and coupling functions.
Second, our theory produces phase patterns that can
quantitatively fit gene expression patterns observed in
the segmentation clock [31, 32], see Fig. 2. Third, in-
dependently of the details of the frequency and coupling
strength profiles and the shape of the coupling function,
our theory predicts through Eq. (10) the dependence of

the collective frequency on coupling strength and cou-
pling delay, consistent with experiments [32].

Delays in oscillator coupling play an important role for
the stability of synchronized phase profiles, as has been
shown for simple cases [45]. Stable solutions of Eq. (7)
describe long wavelength modes of the coupled oscillator
system given by Eq. (1). The stability of these modes
depends on time delays and boundary conditions. Insta-
bilities of Eq. (7) respect to short wavelengths describe
situations where the continuum description breaks down.

Systems of coupled oscillators can display individual
variability [48, 49] and be subject to dynamic fluctua-
tions [50]. Individual variability can be described by
quenched disorder in the parameters, such as the fre-
quency or coupling [48]. Dynamic fluctuations can be
described by an additional noise term in Eq. (7) [51].
With the addition of this noise term, Eq. (7) is a general-
ization of the Kardar–Parisi–Zhang (KPZ) equation [52]
to time-delayed and inhomogeneous systems. In the KPZ
equation the interplay of noise and nonlinearity induces
a rich phenomenology. This indicates that the addition
of noise to our problem may have interesting effects on
the dynamics. Finally, fluctuations in the coupling de-
lays could be straightforwardly accounted for in the the-
ory, extending Eq. (7) to include distributed coupling
delays [53].

In this Letter, we have introduced a continuum descrip-
tion of long wavelength modes in extended systems of os-
cillators with coupling delays, Eq. (7). We have applied
this continuum description to a problem from biology,
the segmentation clock. This problem involves moving
boundaries, which together with time delays give rise to
nonlocal effects, see Eq. (9). We have proposed here that
time delays have a key role in shaping the pattern of spa-
tial phase profiles, apart from setting the period of the
segmentation clock. The biological example of the seg-
mentation clock shows that the continuum description is
a powerful method to study extended systems with cou-
pling delays.
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[11] V. M. Egúıluz, T. Pérez, J. Borge-Holthoefer, and

A. Arenas, Phys. Rev. E 83, 056113 (2011).
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