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Phase synchronization and polarization ordering of globally coupled oscillators
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We introduce a prototype model for globally coupled oscillators in which each element is given an oscilla-
tion frequency and a preferential oscillation directigolarizatior), both randomly distributed. We found two
collective transitions: to phase synchronization and to polarization ordering. Introducing a global-phase and
polarization order parameters, we show that the transition to global-phase synchrony is found when the
coupling overcomes a critical value and that polarization order enhancement cannot take place before global-
phase synchrony. We develop a self-consistent theory to determine both order parameters in good agreement
with numerical results.
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In recent years a considerable interest has been devoted sarface-emitting laser6/CSEL9 [11], where the polariza-
the self-organization properties exhibited by networks oftion of the emitted light is not fixed by the structyd?], and
coupled nonlinear oscillatorgl]. The work of Winfree[2] the interplay between polarization and electric field global-
first showed that the study of self-sustained non-identicaphase requires at least a description in terms of two phases
oscillators is a suitable framework to achieve insight into thefor each element. Indeed, it is possible to have states in
synchronization processes in biological systems. Based owhich the global phases are synchronized despite a mis-
Winfree’s approach, Kuramotd3] proposed a treatable aligned polarization configuration. Such states have been ob-
model for synchronizing oscillators successfully exploited inserved experimentally in VCSEL arraj$4]. Moreover, po-
many fields, from heart physiolog4] to superconducting larization dynamics play an important role in the
junctions[5]. The underlying idea behind this success is thasynchronization of master-slave VCSEL configurations, and
in many instances the dynamics of the individual oscillatorgPolarization encoding has recently been proposed for high
can effectively be described as a limit cycle in which only bit-rate encryption in optical communicatiofs5]. _
one phase plays a relevant role. Then, for small disorder and !N this Rapid Communication, we develop an extension of
weak coupling the Kuramoto model provides an excellenth® Kuramoto model as a prototype for the study of the fun-
description of the synchronization process. A limitation of d@mental properties of coupled oscillators described by vec-
this model is that it does not consider the possible diﬁerengr fields in which at least two phases play a critical role:
direction of oscillation of the coupled oscillators. Whereas ne associated with the natural oscillation frequency as in

for instance, the Kuramoto model has been generalized int-he Kuramoto model, and the other with the direction of

cluding inertial effects[6], the relationship between phase oscillation(polarization. We study the synchronization prop-

hronizati g iol llecti deri fth erties of an ensemble of globally coupled non-identical os-
synchronization and a possibie collective oraering or the Osgil/lators and show the existence of two transitions: phase

cillation direction has not yet been addressed. Such generay hronization and polarization direction ordering. We de-
question would arise, for example, when considering coupledg|op a self-consistent theory to determine the thresholds for
oscillators, each of which can oscillate in an arbitrary direc-yoth transitions and show that polarization ordering can

tion in a plane. This is of direct relevance in the field of never take place if the system is not already synchronized in
optics: the cooperative behavior encountered in laser arraygequency.

has been investigated both from experimeififa8] and the- Our analysis is made in the context of a general model,
oretical [7,9] points of view including descriptions in terms the Vector Complex Ginzburg-Landau EquatiGACGLE),
of the Kuramoto mode]l10] where the global coupling arises which has been used for modeling different physical sys-
from light feedback from an external mirror. However, the tems, from two-components Bose condens§ié} to non-
vectorial nature of the electric field imposes a fundamentalinear optics[17] including laser emission from wide aper-
limitation to the description in terms of single phase oscilla-ture resonators such as VCSHIS,18. The VCGLE can be
tors. This description can only be used when the polarizatiofvritten on symmetry grounds, but the determination of the
degree of freedom is completely fixed by natural constraintsparameters in the equation requires a specific physical
This is not the case, for example, in arrays of vertical-cavitymodel. We consider here parameter ranges of interest in op-
tics. A set ofN globally coupled space-independent VCGLESs

is given by
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nent of theji,(j=1...N) vector variable,w; is the natural in our system. They are statistical quantities, randomly cho-
oscillation frequency; gives a nonlinear frequency shift sen from two symmetric unimodal distributiorgt) and

and y; (a real number for laserscouples the polarization p(w), with zero mean and standard deviatioy and o,
components. The terrty,+iy,)expid) represents an ex- respectively. Therefore, we introduce two order parameters
ternal forcing[18] that linearly couplesA’ and Aj. For ex-  to characterize the degree of polarization ordering and phase
ample, for a VCSEL, the forcing arises #rom device anisotro-synchronization, respectively,

pies (dichroism and birefringenge[12] that couple the

circularly polarized components of the electric field, intro- 1 N

ducing two preferential polarization directions. Another ex- nexpliy) == expligs), (4)
ample is a ring laser where any localized change in the re- Ni=1

fraction index breaks the invariance along the ring,
introducing the same coupling between the two counter-
propagating modegl9] and setting a preferential phase re-
lationship between thent is the strength of the global cou-
pling which in laser arrays may be induced by external
reflections(e.g., by placing a reflection at the common re-
flector of the array{20]) or by a common active medium
[14]. We introduceA; =Q} explig:). We considery; <1, for
which linearly polarized state(Qj =QJ-‘) are stable solutions
of the solitary oscillat_or{;13], as is the case of VCS.El[$2]. %nd -

Close to these solutions, we neg!ect the dynamics for eac For small coupling the global phases; are de-

polarization component amplitud®;=0), so that the sys- synchronized, which leads the coupling term in the polariza-
tem(1) can be described in terms of phase equations for eacfion Eq. (2) to the vanish. Therefore each oscillator remains
oscillator: The global phase;=(¢; +¢;)/2, and the rota- oscillating in its natural polarization angle. No polarization
tional phasey;=(¢; - ¢;)/2, whereas the latter determines interaction takes place until the phasgsstart to synchro-

N
1
p explif) = NkE explidy). (5)
=1

Without couplingp averages to zero while, asjZ 6, 7
accounts for the natural disorder in the polarization angle. In
the continuum limit,n=7,=|/7_ exp(i&/2)q(8)dd|, which is
non-zero unless|(d) is a uniform distribution between

the linear polarization direction. We have nize. IncreasindC, two different scenarios toward polariza-
N tion ordering and phase synchrofiy=p=1) are found de-
¢- = 5, SN2y — &) + 92 Sin(¢i — ) cos dy — 1), pending on the relative strength of the polarizatignand
! FYUNGg ! ! phase disorder,.
) For o,<< 0 the transitions to phase and polarization syn-

chrony are well separated. The phaggssynchronize first.
o The transition to phase synchrony can be analyzed by taking
Y _ e : _ _ 2y = 6; (frozen polarizations so that the se2) and(3) can
Tt 24— 5) + i ). A
bj = o+ yp CO2¢5 — &) Ngls'n(d’k ;)cos Y= ) be approximated by

(3 N

In the uncoupled casgC=0), the global phaseg; rotate b =wjt+ Yt EE sin( ¢y — ¢j)cos<5k—251>. (6)
at a constant frequency, whereas the polarization angles k=1
reach a steady state, thus modeling a solitary laser emission.
In fact, for C=0 we have two orthogonal linearly polarized Averaging the polarization angles, reduces K6 to a
solutions for thejy, oscillator: 24,=35;, ¢;= g+ (w;+yplt, Kuramoto-like model with an effective coupling,
and 2=, + 1, ¢;=do;+(w;— yp)t, Where ¢y is a constant.
For y,<0 the first solution is selected, whereas fgr>0 _ ¢ N
the second is selected. In laser physics, the paramgter ¢ = w; + yp+—2 sin(¢y — o), (7)
models the different linear gain encountered by the two lin- Ni=1
early polarized solutions, thus making linearly stable the so-

lution with the higher linear gain. In the same context, theyhere Echcoi(é— 5’)/2]q(5)q(5’)d5d5’=Cn§. The po-
parametery, models the cavity birefringencfl?], which  |5rization disorder makes the phase coupling less effective
splits the emission frequency of the two orthogonal linearlypt not vanishing. Following the standard treatment of the
polarized solutions by an amount equal tg,2In the follow- K ramoto model[3], the self-consistent equation for the or-

ing, we takey, <0, so we will refer to 2;=¢; as thenatural  4g, parameter amplitude reads
polarization angleof each oscillator. Our results, however,

do not depend on this choice, or on the signygfwhich we 2
set positive. Fixing the polarization degree of freedom =C f co2(#)p(Cp sin(¢))de. (8)
2¢;(1)=8,=5, for all j) Eq. (3) reverts to the Kuramoto PP -2 PP P

model: ¢; = w;+ y,+(C/N)ZR; sin(¢y—¢)).
The differences in the natural polarization angles and freTherefore, the critical coupling, for the onset of collective
guencies of the oscillators represent two sources of disordgrhase synchronization reads
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Hlmééggssmw have 7 sin(x— ;) :(1/N)EE:1 sin(¢y— ¢;), which introduced

Ix
xxxxxx

I A s =d o ] in Eq. (10) yields
' . Y= vasin2y; - 8) - Cysiny—x). (1D
P _
o.4f The stationary solution);(8, 7, x), given implicitly by
S e Yasin2y; - 8)-Cysinly;-x =0, (12
o -0.02 Q0 0.02 -0.02 Q0 0.02
R : . . can be introduced in E@4) to self-consistently find; and .

In the continuum limit we have

neXD(iX)=JeXF{iJ(5, 7.x)]a(8)do. (13

0.8

Altogether, Egs(12) and(13) allow for the calculation of the
060 > L . polarization order parameter, for example through a Newton-
10g,,(C) Raphson method, so that the polarization ordering can be
fully described. The imaginary part of integrél3) was
found to vanish(y=0), if q(o) is even. Figure 1 shows the

FIG. 1. Amplitude of order parametegsand » as function of

the couplingC. The solid line corresponds to the theoretical predic- . . —
tions, whereas the symbols to numerical integratioi2pfand (3) agreement between the evaluationsplising the definition

for typical VCSEL birefringence valuegd: y,=0, +: y,=1, X (4) with the results of the numerical integration of the full set
=25, A% 7,=5). We have consideres,=—0.5,N=10% a Gauss- E_qs.(2) and(3) and using the self—cpnsstent approximation
ian distributionp(w) for the natural frequencies with,=1072, and ~ 9/VeN by Eq.s(12) and(13). We obtain good results even for
a uniform distributiong(8)=1/2A for ~A< <A, with A=m/2  Small coupling where global phases are desynchronized
(05=A/+3=0.9068 for the natural polarization angles. The insets that regime the contribution of the coupling term in the po-
show the time-averaged dressed frequencies distributionfeb, larization equation is negligibleThe ordering of the polar-
C=0.1(left) and C=2.5 (right). The natural frequency distribution ization directions induces a loss of coherence where the
p(w) is shown for referencesolid line). phases partially de-synchronize, loweripg The reason is
that, as the polarization order is increased, the polarization
2 angles depart from the natural angle, and therefore the term
C.= ) (9) Yp COS2¢;— &) in Eq. (3) plays the role of an added disorder
_ y y to the natural frequencies;. Increasingvy,, this effect is
Wp(O)JCOi((S 9)/2la(d)a(d)deds linearly increased, enhancgng the cohergnce loss extent, as
shown in Fig. 1. Fory,=5, p is reduced down to 0.65. The
Figure 1 shows the good agreement between the transition tiveraged dressed frequency distributioght inset of Fig. 1
phase synchronization obtained from numerical integratioshows that the peak & =0 is lowered in the same propor-
of (2) and(3) and the solution of the self-consistent £8).  tion and two lateral lobes associated with drifting oscillators
Notice the excellent agreement obtained for the onset of syrappear, yielding an overall shape for the distribution similar
chronization given by(9) C;=0.01968. The distribution of to that of partially synchronized Kuramoto oscillatdi3.
averaged dressed frequenci@s(¢) (left inset of Fig. 3 ~ From a practical point of view, the coherence lowering
shows a highly dominant peak which comes from the synWould have a direct impact the output intensity in VCSEL
chronized oscillatorgd.97N in this casg Notice also that for ~ arrays. A reduction op down to 0.65 leads to coherent out-
C<C, the polarization order parameter takes a constanPUt intensity of only 40% with respect to the fully synchro-
value 7, which corresponds to the initial polarization disor- Nized case. Finally, for large coupling, complete phase syn-
der, in agreement with the assumptions leading7o chronization and polarization ordering are achieved.
Increasing further the coupling strength, the oscillators Numerical simulations for different values of; showed
leave the respective natural polarization angles and start @t decreasing the disorder in the natural polarization
order in polarization. As the phase synchronization has al@ngles, the polarization transition to synchronization shifts to
ready been achieved, we are now in the position to develop ®wer values of the coupling. However, a polarization order
self-consistent theory for the polarization ordering as fol-enhancement is not possible before the phases start to syn-

lows: Assuming perfect phase synchronizatigh=#)), Eq. ~ chronize, so fof,,~ o; or o,,> o5 the two transitions take
(2) becomes place simultaneously. Nevertheless, the polarizations are still

effectively uncoupled until the phases start to synchronize,
. cN so the self-consistent Equati@8) still holds as well as the
;= va SIN2y = 5) + => sin(gi = ). (10) predlctlon(9) for the phase synchromzauqn o_nﬁn wh|qh
Ni=1 now also signals the onset of the polarization ordering as
shown in Fig. 2. The self-consistent equation for the polar-
Since the individual polarization is not self-oscillating, Eg. ization order parameter still gives a good description of the
(10) is not a Kuramoto-like model. However, frotd) we  polarization order enhancement.
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direction (polarization. Two sources of disorder are in-
cluded: Randomly distributed natural frequencies and natural
oscillation directions. Increasing the coupling no polarization
order enhancement is possible until the phases start to syn-
chronize, because the phase disorder destroys the interaction
among the polarization variables. This is in agreement with
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experimental results observed in VCSEL arr§y4d]. Typi-

cally, the frequencies synchronize first, and polarization syn-
chrony takes place at a higher coupling level, through a par-
tial de-synchronization of the phaséherence lowering

We have developed self-consistent approximations which
provide a very good estimate of the synchronization proper-
ties of system. Increasing the disorder in the natural frequen-

0.6 1' L
log, (©)

cies or decreasing the disorder in the natural polarization
angle the two transitions merge in a unique process to full

FIG. 2. Amplitude of order parametepsand » as in Fig. 1, but  synchrony, and we provided the critical coupling for its
with larger natural frequency disordet,=0.12,(now C;=0.2363. onset.

In conclusion, we have introduced a theoretical frame- This work has been funded by the European Commission

work to study the synchronization properties of a system othrough VISTA HPRN-CT-2000-00034, the Spanish MCyT
globally coupled oscillators extending the results for limit under project BFM2000-1108, MCyT and Feder SINFIBIO
cycle oscillators to include the consideration of oscillationBFM 2001-0341-C02-02.
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