788 research outputs found

    Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions

    Get PDF
    Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions

    Retinal ganglion cell repopulation for vision restoration in optic neuropathy: a roadmap from the RReSTORe Consortium

    Get PDF
    Retinal ganglion cell (RGC) death in glaucoma and other optic neuropathies results in irreversible vision loss due to the mammalian central nervous system's limited regenerative capacity. RGC repopulation is a promising therapeutic approach to reverse vision loss from optic neuropathies if the newly introduced neurons can reestablish functional retinal and thalamic circuits. In theory, RGCs might be repopulated through the transplantation of stem cell-derived neurons or via the induction of endogenous transdifferentiation. The RGC Repopulation, Stem Cell Transplantation, and Optic Nerve Regeneration (RReSTORe) Consortium was established to address the challenges associated with the therapeutic repair of the visual pathway in optic neuropathy. In 2022, the RReSTORe Consortium initiated ongoing international collaborative discussions to advance the RGC repopulation field and has identified five critical areas of focus: (1) RGC development and differentiation, (2) Transplantation methods and models, (3) RGC survival, maturation, and host interactions, (4) Inner retinal wiring, and (5) Eye-to-brain connectivity. Here, we discuss the most pertinent questions and challenges that exist on the path to clinical translation and suggest experimental directions to propel this work going forward. Using these five subtopic discussion groups (SDGs) as a framework, we suggest multidisciplinary approaches to restore the diseased visual pathway by leveraging groundbreaking insights from developmental neuroscience, stem cell biology, molecular biology, optical imaging, animal models of optic neuropathy, immunology & immunotolerance, neuropathology & neuroprotection, materials science & biomedical engineering, and regenerative neuroscience. While significant hurdles remain, the RReSTORe Consortium's efforts provide a comprehensive roadmap for advancing the RGC repopulation field and hold potential for transformative progress in restoring vision in patients suffering from optic neuropathies

    Mislocalization of the E3 Ligase, beta-Transducin Repeat-containing Protein 1 (beta-TrCP1), in Glioblastoma Uncouples Negative Feedback between the Pleckstrin Homology Domain Leucine-rich Repeat Protein Phosphatase 1 (PHLPP1) and Akt

    Get PDF
    The PH domain leucine-rich repeat protein phosphatase, PHLPP, plays a central role in controlling the amplitude of growth factor signaling by directly dephosphorylating and thereby inactivating Akt. The cellular levels of PHLPP1 have recently been shown to be enhanced by its substrate, activated Akt, via modulation of a phosphodegron recognized by the E3 ligase β-TrCP1, thus providing a negative feedback loop to tightly control cellular Akt output. Here we show that this feedback loop is lost in aggressive glioblastoma but not less aggressive astrocytoma. Overexpression and pharmacological studies reveal that loss of the feedback loop does not result from a defect in PHLPP1 protein or in the upstream kinases that control its phosphodegron. Rather, the defect arises from altered localization of β-TrCP1; in astrocytoma cell lines and in normal brain tissue the E3 ligase is predominantly cytoplasmic, whereas in glioblastoma cell lines and patient-derived tumor neurospheres, the E3 ligase is confined to the nucleus and thus spatially separated from PHLPP1, which is cytoplasmic. Restoring the localization of β-TrCP1 to the cytosol of glioblastoma cells rescues the ability of Akt to regulate PHLPP1 stability. Additionally, we show that the degradation of another β-TrCP1 substrate, β-catenin, is impaired and accumulates in the cytosol of glioblastoma cell lines. Our findings reveal that the cellular localization of β-TrCP1 is altered in glioblastoma, resulting in dysregulation of PHLPP1 and other substrates such as β-catenin

    Dexmedetomidine sedation in ICU

    Get PDF
    Dexmedetomidine (DEX), a highly selective α2-adrenergic receptor agonist, is the newest agent introduced for sedation in intensive care unit (ICU). The sedation strategy for critically ill patients has stressed light sedation with daily awakening and assessment for neurologic, cognitive, and respiratory functions, since Society of Critical Care Medicine (SCCM) guidelines were presented in 2002. The traditional GABAergic agents, including benzodiazepines and propofol, have some limitations for safe sedatives in this setting, due to an unfavorable pharmacokinetic profile and to detrimental adverse effects (such as lorazepam associated propylene glycol intoxication and propofol infusion syndrome). DEX produces it's sedative, analgesic and cardiovascular effects through α2 receptors on the locus ceruleus (LC). Activities of LC, the tuberomammillary nucleus (TMN) are depressed and activity of the ventrolateral preoptic nucleus (VLPO) is increased during DEX sedation, which is similar in features to normal non-REM (NREM) sleep. At the same time, perifornical orexinergic activity is maintained, which might be associated with attention. This mechanism of action produces a normal sleep-like, cooperative sedation. The characteristic feature of sedation, together with a concomitant opioid sparing effect, may decrease the length of time spent on a ventilator, length of stay in ICU, and prevalence and duration of delirium, as the evidence shown from several comparative studies. In addition, DEX has an excellent safety profile. In conclusion, DEX is considered as a promising agent optimized for sedation in ICU

    Propranolol reduces IFN-γ driven PD-L1 immunosuppression and improves anti-tumour immunity in ovarian cancer

    Get PDF
    The immune system plays an important role in controlling epithelial ovarian cancer (EOC). EOC is considered to be a "cold tumour," a tumour that has not triggered a strong response by the immune system. However, tumour infiltrating lymphocytes (TILs) and the expression of programmed cell death ligand (PD-L1) are used as prognostic indicators in EOC. Immunotherapy such as PD-(L)1 inhibitors have shown limited benefit in EOC. Since the immune system is affected by behavioural stress and the beta-adrenergic signalling pathway, this study aimed to explore the impact of propranolol (PRO), a beta-blocker, on anti-tumour immunity in both in vitro and in vivo EOC models. Noradrenaline (NA), an adrenergic agonist, did not directly regulate PD-L1 expression but PD-L1 was significantly upregulated by IFN-γ in EOC cell lines. IFN-γ also increased PD-L1 on extracellular vesicles (EVs) released by ID8 cells. PRO significantly decreased IFN-γ levels in primary immune cells activated ex vivo and showed increased viability of the CD8+ cell population in an EV-immune cell co-incubation. In addition, PRO reverted PD-L1 upregulation and significantly decreased IL-10 levels in an immune-cancer cell co-culture. Chronic behavioural stress increased metastasis in mice while PRO monotherapy and the combo of PRO and PD-(L)1 inhibitor significantly decreased stress-induced metastasis. The combined therapy also reduced tumour weight compared to the cancer control group and induced anti-tumour T-cell responses with significant CD8 expression in tumour tissues. In conclusion, PRO showed a modulation of the cancer immune response by decreasing IFN-γ production and, in turn, IFN-γ-mediated PD-L1 overexpression. The combined therapy of PRO and PD-(L)1 inhibitor decreased metastasis and improved anti-tumour immunity offering a promising new therapy

    Inter- and intrachromosomal asynchrony of cell division cycle events in root meristem cells of Allium cepa: possible connection with gradient of cyclin B-like proteins

    Get PDF
    Alternate treatments of Allium cepa root meristems with hydroxyurea (HU) and caffeine give rise to extremely large and highly elongated cells with atypical images of mitotic divisions, including internuclear asynchrony and an unknown type of interchromosomal asynchrony observed during metaphase-to-anaphase transition. Another type of asynchrony that cannot depend solely on the increased length of cells was observed following long-term incubation of roots with HU. This kind of treatment revealed both cell nuclei entering premature mitosis and, for the first time, an uncommon form of mitotic abnormality manifested in a gradual condensation of chromatin (spanning from interphase to prometaphase). Immunocytochemical study of polykaryotic cells using anti-β tubulin antibodies revealed severe perturbations in the microtubular organization of preprophase bands. Quantitative immunofluorescence measurements of the control cells indicate that the level of cyclin B-like proteins reaches the maximum at the G2 to metaphase transition and then becomes reduced during later stages of mitosis. After long-term incubation with low doses of HU, the amount of cyclin B-like proteins considerably increases, and a significant number of elongated cells show gradients of these proteins spread along successive regions of the perinuclear cytoplasm. It is suggested that there may be a direct link between the effects of HU-mediated deceleration of S- and G2-phases and an enhanced concentration of cyclin B-like proteins. In consequence, the activation of cyclin B-CDK complexes gives rise to an abnormal pattern of premature mitotic chromosome condensation with biphasic nuclear structures having one part of chromatin decondensed, and the other part condensed

    Cerebrospinal fluid β-amyloid₄₂ and neurofilament light relate to white matter hyperintensities

    Get PDF
    White matter hyperintensities (WMHs) are associated with poorer brain health, but their pathophysiological substrates remain elusive. To better understand the mechanistic underpinnings of WMHs among older adults, this study examined in vivo cerebrospinal fluid biomarkers of β-amyloid₄₂ deposition (Aβ₄₂), hyperphosphorylated tau pathology, neurodegeneration (total tau), and axonal injury (neurofilament light [NFL]) in relation to log-transformed WMHs volume. Participants free of clinical stroke and dementia were drawn from the Vanderbilt Memory & Aging Project (n = 148, 72 ± 6 years). Linear regression models adjusted for age, sex, race/ethnicity, education, intracranial volume, modified Framingham Stroke Risk Profile (excluding points assigned for age), cognitive diagnosis, and APOE-ε4 carrier status. Aβ₄₂ (β = −0.001, p = 0.007) and NFL (β = 0.0003, p = 0.01) concentrations related to WMHs but neither hyperphosphorylated tau nor total tau associations with WMHs reached statistical significance (p-values > 0.21). In a combined model, NFL accounted for 3.2% of unique variance in WMHs and Aβ₄₂ accounted for an additional 4.3% beyond NFL, providing novel evidence of the co-occurrence of at least 2 distinct pathways for WMHs among older adults, including amyloid deposition and axonal injury

    Profile of blood cells and inflammatory mediators in periodic fever, aphthous stomatitis, pharyngitis and adenitis (PFAPA) syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study aimed to profile levels of blood cells and serum cytokines during afebrile and febrile phases of periodic fever, aphthous <b>s</b>tomatitis, pharyngitis and adenitis (PFAPA) syndrome to advance pathophysiological understanding of this pediatric disease.</p> <p>Methods</p> <p>A cohort of patients with a median age of 4.9 years experiencing 'typical PFAPA' episodes participated in this study. Blood cells and serum cytokines were analyzed by CBC analysis and multiplex ELISA.</p> <p>Results</p> <p>Oscillations in the concentration of blood cells during the afebrile and febrile phases of typical PFAPA syndrome were observed; novel findings include increased monocytes and decreased eosinophils during a febrile episode and increased thrombocytes in the afebrile interval. Relatively modest levels of pro-inflammatory cytokines were present in sera. IFNγ-induced cytokine IP10/CXCL10 was increased after the onset of fever while T cell-associated cytokines IL7 and IL17 were suppressed during afebrile and febrile periods.</p> <p>Conclusions</p> <p>Identification of dysregulated blood cells and serum cytokines is an initial step towards the identification of biomarkers of PFAPA disease and/or players in disease pathogenesis. Future investigations are required to conclusively discern which mediators are associated specifically with PFAPA syndrome.</p

    ANKRD54 preferentially selects Bruton's Tyrosine Kinase (BTK) from a Human Src-Homology 3 (SH3) domain library

    Get PDF
    Bruton's Tyrosine Kinase (BTK) is a cytoplasmic protein tyrosine kinase with a fundamental role in B-lymphocyte development and activation. The nucleocytoplasmic shuttling of BTK is specifically modulated by the Ankyrin Repeat Domain 54 (ANKRD54) protein and the interaction is known to be exclusively SH3-dependent. To identify the spectrum of the ANKRD54 SH3-interactome, we applied phage-display screening of a library containing all the 296 human SH3 domains. The BTK-SH3 domain was the prime interactor. Quantitative western blotting analysis demonstrated the accuracy of the screening procedure. Revealing the spectrum and specificity of ANKRD54-interactome is a critical step toward functional analysis in cells and tissues.Peer reviewe
    corecore