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Abstract 

Understanding the underlying signalling pathways that enable fouling algae to sense and respond to 
surfaces is essential in the design of environmentally friendly coatings. Both the green alga Ulva and 
diverse diatoms are important ecologically and economically for being persistent biofoulers. Ulva 
spores exhibit rapid secretion, allowing them to quickly permanently adhere to a ship, whilst 
diatoms secrete an abundance of extracellular polymeric substances (EPS), which are highly 
adaptable to suit environmental conditions. There is evidence, now supported by molecular data, for 
complex calcium and nitric oxide (NO) signalling pathways in both Ulva and diatoms being involved 
in surface sensing and/or adhesion.  Moreover, adaptation to stress has profound effects on 
biofouling capability in both types of organism. Targets for future antifouling coatings based on 
surface sensing are discussed, with an emphasis on pursuing NO-releasing coatings as a potentially 
universal antifouling strategy. 
 
Keywords 
Ulva, diatoms, antifouling coatings, genomics, nitric oxide (NO), calcium signalling.  

Introduction 
Biofouling of ships is a major problem due to the increased roughness of the hull resulting in drag, 
which generates a significant fuel penalty (of up to 86% at cruising speed) (Schultz 2007; Callow & 
Callow 2011). With shipping emissions predicted to increase to a quarter of the world’s greenhouse 
gas output by 2050 (Kennedy et al. 2011), effective antifouling coatings are urgently required. Since 
the ban of application of the effective but toxic TBT coatings, there has been an increase in the use 
of copper-based antifouling paints (AF) along with a range of co-biocides (Finnie & Williams 2009). In 
addition to problems with passive leaching of copper, copper-based coatings require frequent 
cleaning, which has resulted in copper concentrations in harbours exceeding water quality 
standards, leading to enhanced regulation (Earley et al. 2014). There is therefore a need for non-
biocidal, environmentally-friendly coatings such as the fouling-release coatings – commercially 
developed coatings based on polydimethylsiloxane elastomers (PDMSe) (Finnie & Williams 2009).  
 
Comprehensive reviews of the current antifouling technologies by Finnie & Williams (2009) and 
Lejars et al. (2012) conclude that foul-release coatings are the most environmentally friendly option, 
due to their longevity and reduction in drag leading to a marked decrease in fuel usage. Persistent 
biofilms (containing diatoms and bacteria) do, however, remain on foul-release coatings, which 
require cleaning (Hearin et al. 2015; Tribou & Swain 2015) as they can result in a 10-16% power 
penalty (Schultz 2007; Schultz et al. 2015). However, the cost of cleaning is negligible compared to 
the fuel cost savings made (Schultz et al. 2011).  
 
The major algal biofoulers are from two evolutionarily distinct groups: green seaweeds and diatoms, 
which show varying adhesion to the foul-release coatings discussed above. Ulva syn Enteromorpha 
(Hayden et al. 2003) is a common green marine alga that is of great economic importance due to (i) 
it being a cosmopolitan fouler of submerged surfaces such as ships and (ii) its capacity to form ‘green 
tides’ – mass accumulations which can have a major economic and ecological effect (eg. Niu et al. 
2010). Ulva is considered the major macrofouling alga as it is commonly found attached to ship hulls 
protected with antifouling paints (Callow & Callow 2002). Diatoms are unicellular algae that are 
omnipresent in aquatic environments and are responsible for 20-40% of global carbon fixation (Field 
et al. 1998; Yool & Tyrrell 2003), yet they are also the most frequent and successful microalgal 
foulers of submerged structures (Wetherbee et al. 1998). Spores and young plants of Ulva have 
weak adhesion to foul-release PDMSe (Gunari et al. 2011; Sundaram, Cho, Dimitriou, Weinman, et 
al. 2011; Cho et al. 2012; Zhou et al. 2014). By contrast, diatom slimes adhere strongly to PDMSe 
(Holland et al. 2004; Stanley & Callow 2007; Sundaram, Cho, Dimitriou, Finlay, et al. 2011; Cho et al. 
2012; Sokolova et al. 2012). The biofilm composition of microfouling communities differs between 
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foul-release coatings and biocidal antifouling copper-release coatings (Molino et al. 2009; Hunsucker 
et al. 2014; Muthukrishnan et al. 2014). Foul-release coatings have a greater diversity of diatoms, 
being more difficult to remove (Hunsucker et al. 2014), which could therefore encourage selection 
for more tenaciously adherent species of diatoms.  
 
To aid the improved design of AF coatings, a better understanding of the mechanisms by which 
organisms detect and respond to the properties of a surface is required. In this review, cell signalling 
and stress responses in relation to surfaces are discussed in Ulva sp., benthic diatoms (the most 
problematic for foul-release coatings (Hunsucker & Swain 2016)) and Phaeodactylum tricornutum, a 
planktonic diatom that also has a benthic cell morphotype, in which cell signalling has been 
extensively studied. Future directions for research are suggested with emphasis on the use of 
genomic data and the new genetic toolkits that are becoming available for algae.  
 

Summary of Ulva biology and life cycle 
At spring tide, millions of microscopic swimming spores are released per day by the adult plant, 
which actively settle, often gregariously, on detection of preferable substrata by secreting a 
preformed adhesive. The spore itself is pyriform in shape and 7-8 µm long with four anterior flagella 
that form a dome called the apical papilla, which is thought to be the main ‘sensing’ area of the 
spore (Callow et al. 1997) (Figure 1a). Many Golgi-derived electron-dense vesicles containing 
adhesive are also found in this area (Evans & Christie 1970). At the posterior end of the spore are the 
nucleus and a single chloroplast. The biology of Ulva sp. spores, including their life cycle, 
ultrastructure and investigations into their adhesive is extensively covered in Callow & Callow 
(2006). 
 
The process of spore settlement begins when the swimming behaviour of the spore changes from 
random motion to a more localised searching pattern (Heydt et al. 2007). The spore makes contact 
with the surface via its apical papilla and then spins, ‘sensing’ the surface for seconds to minutes 
until it either permanently adheres or swims off (Callow & Callow 2000). Permanent adhesion occurs 
when the spore stops spinning and releases its adhesive vesicles over a time-frame of ~2 minutes to 
form an adhesive pad (Callow et al. 2000). The flagellar axonemes are then withdrawn into the cell 
and the lipoprotein sheaths discarded (Evans & Christie 1970). Settled spores assume a more 
spherical shape (Figure 1b) developing a cell wall within 20 min (Callow & Callow 2000), germinating 
within 24 h and then undergoing cell division to form the new adult plant (sporeling). Use of 
monoclonal antibodies revealed that the adhesive continues to be produced after settlement 
(Stanley et al. 1999). The adhesive vesicles contain an N-linked glycoprotein which undergoes rapid 
progressive curing by S-S bond cross-linking, becoming harder over time (Stanley et al. 1999; 
Humphrey et al. 2005). Analysis of Expressed Sequence Tags (ESTs) from sporulating tissue of Ulva 
linza (ESTs therefore assumed to be present in Ulva spores), revealed expressed genes encoding 
proteins involved in cell wall synthesis and cell-cell adhesion, with similarities to hydroxyproline-rich 
cell wall proteins found in flowering plants and pherophorins found in the green alga Volvox (Stanley 
et al. 2005). 
 

Sensing of surfaces by Ulva spores 
As outlined above, settlement is an active process and much research has been conducted on the 
settlement cues that motile spores utilize. A list of factors affecting spore settlement, which include 
salinity, light and colour of coating, are given in Table 1. Three-dimensional tracking of spores has 
been analysed using digital in-line holography (Heydt et al. 2007; Heydt et al. 2012; Vater et al. 
2015), reviewed by Rosenhahn & Sendra (2012). Spores decelerate when in close contact (0-30 µm) 
with an attractive hydrophobic surface such as FOTS (tridecafluoroctyl-triethoxysilane), which has 
high spore settlement. The spinning motion of spores appears to be an active behaviour probing the 
surface, as they only spin for seconds on a surface which has low settlement (AWG – acid washed 
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glass) compared to minutes on FOTS. It was proposed that the spinning is a way of testing how well a 
spore adheres to a surface (a small amount of ‘temporary adhesive’ was seen to be released at this 
stage using video microscopy (Callow et al. 1997)). Active sensing of the surface requires signalling 
mechanisms in the cell to relay information. This could involve mechanosensitive channels leading to 
the activation of a Ca2+-signalling pathway and resulting in release of the adhesive vesicles, which 
secure permanent attachment (see ‘Targeted secretion and calcium signalling in Ulva spores’).  
 
Many studies have varied surface topography to investigate microtopographic cues for settlement 
(reviewed by Scardino (2009) and Scardino & de Nys (2011)). Settlement of spores increases in 
valleys and pillars which are 5 µm deep and 5 µm wide i.e. the same diameter as the spore body 
when settled – it is thought that this enhances adhesive contact and protects spores from both 
hydrodynamic forces and desiccation (Callow & Callow 2002; Hoipkemeier-Wilson et al. 2004). 
Further studies have found that settlement on topographies decreases with increasing aspect ratio 
(feature height/feature width) (Schumacher, Aldred, et al. 2007). Spore settlement is also reduced 
on complex topographies inspired by those found on fast moving sharks (Sharklet AFTM) compared to 
smooth PDMSe (Carman et al. 2006; Schumacher, Carman, et al. 2007), with a reduction in 
gregarious settlement on the Sharklet surface suggesting that the spores’ ability to sense the 
presence of settled spores is affected (Cooper et al. 2011). Attachment models have been developed 
to ascertain the effect of the Sharklet features on spore settlement (Long et al. 2010) and on 
surfaces other than PDMSe (Magin et al. 2011).  
   
QS signalling and its effects on settlement 
Spores settle preferentially on top of bacterial biofilms (Joint et al. 2000) and the interactions 
between bacteria and spores has been investigated, in particular the detection of bacterial quorum-
sensing (QS) by spores to select sites for attachment. Gram-negative bacteria, which are 
predominant in the marine environment, produce N-acylhomoserine lactones (AHLs) (Zhang et al. 
2006; Williams et al. 2007). When the level of AHLs produced by bacteria reaches a threshold 
concentration, they bind to a cytoplasmic receptor, which then activates expression of QS genes 
needed for biofilm formation. Ulva can detect and respond to QS signalling pathways involving AHLs 
(Joint et al. 2002; Tait et al. 2005; Wheeler et al. 2006; Tait et al. 2009). The bacterium Vibrio 
anguillarum stimulated settlement of Ulva spores, whereas its AHL-deficient mutant inhibited spore 
settlement (Joint et al. 2002; Tait et al. 2005). Further studies supported the role of AHLs in spore 
settlement showing that synthetic AHLs induce spore settlement (Joint et al. 2007) and that AHLs act 
as a strong chemoattractant, leading to spore deceleration and enhanced settlement in the vicinity 
of the AHL (Wheeler et al. 2006). Elevations in [Ca2+]cyt occurred in spores in response to AHLs (Joint 
et al. 2007) and it was postulated that the elevated [Ca2+]cyt acts as a second messenger in response 
to an unknown receptor resulting in changes in flagellar movement. 
 
Targeted secretion and calcium signalling in Ulva spores 
Early studies using electron microscopy revealed the absence of vesicles in settled spores, suggesting 
that exocytosis had occurred (Evans & Christie 1970). Subsequent video microscopy revealed intense 
cytoplasmic activity as the spore undergoes permanent adhesion, attributed to the movement of 
adhesive vesicles for release at the plasma membrane (Callow et al. 1997). Inhibition of secretion 
and membrane traffic resulted in a 50% reduction in spore settlement (Callow et al. 2001) providing 
further evidence that exocytosis of adhesive vesicles is required for spore adhesion.  
 
To investigate the secretion process further, Thompson et al. (2007) used the fluorescent styryl dye 
FM 1-43 to investigate endocytosis – the process of vesicle recovery from the plasma membrane 
that occurs after exocytosis to prevent cell expansion and regulate membrane recycling (Marcote et 
al. 2000). If spores undergo mass secretion upon settlement then membrane recycling is needed to 
prevent expansion of the plasma membrane (Samuels & Bisalputra 1990). In plants, endocytic 
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retrieval of plasma membrane occurs through clathrin-coated pits and is targeted to a series of 
endosomal structures that sort the material for recycling (Geldner 2004). Molecular studies of 
sporulating tissue of U. linza have revealed ESTs coding for a clathrin vesicle coat protein (Stanley et 
al. 2005).  
 
The fluorescent dye FM 1-43 has a high affinity for lipid membranes but cannot penetrate the 
cytosol, hence intracellular labelling is a marker for plasma membrane entering the cell via 
endocytosis (Emans et al. 2002). When spores were incubated with FM 1-43, rapid endocytosis 
occurred at settlement with a discrete spot appearing in the cell within a minute after committing to 
settlement (Figure 2) (Thompson et al. 2007). The localised nature of FM 1-43 internalisation 
indicated targeted membrane retrieval to an endosomal compartment. Metabolic pathway analysis 
of U. linza transcriptome data provided further support for membrane recycling with nearly 20% of 
reads assigned to cellular processes classified as related to endocytosis (X. Zhang et al. 2012). 
Compared to other plant and algal species studied such as tobacco, broad bean, Arabidopsis and the 
diatom Coscinodiscus wailesii (Kubitscheck et al. 2000; Ueda et al. 2001; Emans et al. 2002; Kuhn & 
Brownlee 2005), Ulva spores show rapid secretion and membrane recycling which may explain why 
it is such an effective fouler as it can adhere to a ship rapidly. 
  
An alternative way to measure secretion is to use carbon-fibre microelectrodes that 
electrochemically detect release of individual vesicles if they contain redox-active products (Chow et 
al. 1992). The technique was used with Ulva to test whether spores secreted products that were 
oxidisable upon settlement (Thompson 2007). Although spontaneous release of oxidisable products 
at the point of spore settlement was not detected, a population of vesicles containing redox-active 
molecules were found when settled spores were mechanostimulated (Thompson 2007), indicating 
the presence of mechanosensitive channels in the plasma membrane. Callow & Callow (2011) 
discussed the possibility of mechanotransducer receptor proteins in the cell membrane that allow 
the cell to detect the surface topography and induce signalling pathways that modify spore 
settlement – an essential signalling pathway being the release of the adhesive vesicles.  
 
The regulation of membrane cycling, involving the endomembrane system, cytoskeleton and plasma 
membrane, is Ca2+-dependent in plants and animals (Steer 1988; Battey & Blackbourn 1993; Barclay 
et al. 2005) and ESTs coding for Ca2+-signalling related genes such as calcium-dependent protein 
kinases have been identified in U. linza sporulating tissue (Stanley et al. 2005). Therefore, the 
potential role of Ca2+ upon settlement of Ulva spores (Figure 3) was studied in Thompson et al. 
(2007) using fluorescent Ca2+-indicators. Settlement was induced by the addition of low melting 
point agarose and settling cells showed either transient or prolonged increases in [Ca2+]cyt. The spore 
undergoes several processes upon settlement that may require elevations in [Ca2+]cyt including 
exocytosis, deflagellation and changes in cell shape. Both secretion and deflagellation are Ca2+-
regulated in Fucus, Chlamydomonas and Phaeocystis globosa  (Roberts et al. 1994; Chin et al. 2004; 
Bothwell et al. 2006) and in Ulva spores, [Ca2+]cyt elevations occurred at the same point as 
deflagellation as well as prior to settlement when [Ca2+]cyt was two-fold higher than in settled spores 
(Thompson et al. 2007). The source of the elevation in [Ca2+]cyt may be extracellular as when Ca2+-
influx was blocked using the Ca2+ channel inhibitors verapamil and gadolinium, there was a reduction 
in settlement (Thompson 2007). Internal release of Ca2+ from stores such as the ER and vacuole may 
also be important and can be induced via Ca2+-influx through the plasma membrane (Sanders et al. 
1999). Elevation of [Ca2+]cyt appears to be an important trigger for spore settlement, but further 
studies are needed using inhibitors such as the aminosteroid U73122 which blocks phospholipase C-
mediated intracellular Ca2+ release (Lee & Shen 1998; Coelho et al. 2002). Fast-Ca2+ imaging could 
also be used to determine whether a single [Ca2+]cyt elevation triggers all the processes or whether 
each process is regulated by spatio-temporal patterns of [Ca2+]cyt. Caged Ca2+-reagents such as Ca2+-

5 
 



nitrophenyl-EGTA (Ca2+-NP-EGTA), which deliver Ca2+ upon photolysis, could be used to transiently 
elevate [Ca2+]cyt to see if this triggers spores to secrete their adhesive and hence settle.   
 
Role of nitric oxide in spore settlement and adhesion 
As previous studies had shown a role for elevated nitric oxide (NO) in reducing diatom, bacterial and 
animal cell adhesion (Bohl & West 2000; Charville et al. 2008; Thompson et al. 2008; Werwinski et al. 
2011), the signalling molecule NO and its effects upon adhesion were studied in Ulva spores 
(Thompson et al. 2010). Artificially elevating NO by the addition of the NO donor SNAP (S-nitroso-N-
acetylpenicillamine) resulted in a 30% reduction in spore settlement and complete removal of spores 
compared to 45% removal of control cells (without SNAP). Sporeling attachment was also reduced 
under elevated NO (Thompson et al. 2010). As the reduction in settlement was not due to reduced 
motility, it was hypothesised that NO may inhibit the signalling process leading to the secretion of 
the adhesive vesicles. As previously discussed, elevations of [Ca2+]cyt occur at spore settlement and in 
ventricular cells, NO inhibited the Ca2+ current by increasing the second messenger cGMP (cyclic 
Guanosine MonoPhosphate) preventing Ca2+ entry into the cell (Gallo et al. 2001). A similar 
mechanism could exist in Ulva spores with elevated NO reducing the Ca2+-influx so that release of 
the adhesive vesicles is affected. As sporeling adhesion was reduced when grown in the presence of 
NO (Thompson et al. 2010), NO may also affect curing of the adhesive such as cross-linking reactions 
(Humphrey et al. 2005) (Figure 4a). 
 
NO production on surfaces of differing physio-chemical properties was also tested. Spores produced 
more NO on a surface to which they were weakly attached (Intersleek 900, International Paint), with 
lower production of NO on polyurethane - a surface which spores attach strongly to (Thompson et 
al. 2010). It was proposed that the Ulva spore uses NO as an intracellular signalling molecule to 
detect how conducive a surface is for settlement and adhesion by using mechanotransducing 
receptors to detect how stable they are on a surface. On a hydrophilic surface the adhesive spreads 
further (Callow et al. 2005) therefore the cell is more stable (Figure 4b). On a hydrophobic surface 
the adhesive does not spread as far so the cell will be less stable which could initiate a stress 
response involving NO. The production of NO may be via the enzyme nitric oxide synthase (NOS) 
(Foresi et al. 2010), or through NADPH-dependent nitrate and nitrite reductases (Yamasaki et al. 
1999). A functional NOS has been identified in the green algal Ostreococcus genus with 45% 
similarity to human NOS (Foresi et al. 2010). 
 

Interface between stress responses and biofouling in Ulva  
Marine algae naturally produce reactive oxygen species (ROS) as byproducts of photosynthesis and 
mitochondrial respiration (Marshall et al. 2005). Environmental stresses can cause low levels of ROS 
to accumulate (McKersie & Lesham 1994). Adaptation methods include enzymatic and non-
enzymatic mechanisms to remove the excess ROS. If levels exceed the capacity of the defence 
systems, then photosystems can be damaged (Dummermuth et al. 2003). There has been extensive 
research on the stress-adaptation mechanisms used by Ulva that have led to it being a successful 
fouling organism, as outlined below.  
 
Salinity stress 
Algae attached to boats will travel through varying degrees of salinity, with lower salinity expected 
close to the coast where riverine freshwater inputs are high. Ulva is often found in brackish estuary 
waters where it flourishes on the nutrient-rich inputs of rivers and streams. It must therefore have 
stress-tolerance mechanisms for dealing with changes in salinity. An accumulation of proline and a 
decrease in [Ca2+]cyt occurred in U. fasciata when exposed to extreme salinities (Lee & Liu 1999). 
Proline protects macromolecules such as proteins and membranes from the effects of stress and 
acts as a nitrogen storage compound. Oxidative damage was not induced by hypersalinity (90‰) as 
enzymatic and non-enzymatic defence mechanisms scavenged the excess ROS (Sung et al. 2009). 
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Activities of the ROS scavenging enzymes superoxide dismutase (SOD), APX (ascorbate peroxidase), 
catalase (CAT) and glutathione reductase (GR) were all increased during hypersalinity stress in both 
U. fasciata (Sung et al. 2009) and U. prolifera (Luo & Liu 2011) and genes encoding SOD, APX and 
CAT have been identified in U. linza through transcriptome analysis (X. Zhang et al. 2012). In U. 
prolifera, extremes of low and high salinity prevent release of spores and decrease rhizoid formation 
(Dan et al. 2002).  
 
Desiccation stress 
Populations of algae situated higher up a ship hull will be prone to desiccation, so would be more 
similar to intertidal populations than those at the bottom of a hull (comparable to permanently 
submerged subtidal populations). Ross & Alstyne (2007) studied subtidal vs intertidal populations of 
U. lactuca and found that production of ROS (H2O2) occurred between cells following osmotic stress 
and desiccation by using confocal microscopy to visualize the fluorescent dye DCFH-DA 
(dichlorodihydrofluorescein diacetate). Intertidal populations were adapted to desiccation stress by 
producing lower amounts of ROS, being more efficient at removing ROS and by having a higher 
threshold for oxidative stress. Adaptation mechanisms again include higher activities of the 
antioxidant enzymes APX, CAT and GR but not SOD as levels were the same between subtidal and 
intertidal populations (Ross & Alstyne 2007). 
 
Heavy metal stress   
Research on the effects of copper (Cu) on Ulva is of most interest here as Cu is the main biocide in 
use again since paints became TBT-free (Chambers et al. 2006). Ulva is able to accumulate Cu, with a 
40-fold increase in Cu content in plants growing in Cu-contaminated environments compared to 
control sites (Ratkevicius et al. 2003). Intracellular changes in response to elevated Cu are an 
increase in vacuolation and the number of electron-dense precipitates contained within the 
vacuoles, an increase in the number and size of lipid droplets and irregularities in the Golgi 
apparatus and thylakoid membranes (Andrade et al. 2004). Cu was detected mainly in vacuoles, 
hence it was concluded that Ulva cells reduce Cu toxicity by immobilizing it as a precipitate in 
vacuoles.  
 
Different species of Ulva deviate in their tolerance to Cu (Ratkevicius et al. 2003), however, 
upregulation of antioxidant enzymes seems to be a common coping mechanism for Cu stress. In U. 
fasciata, oxidative stress is induced by the addition of CuSO4 over 4 days resulting in upregulation of 
antioxidant enzymes but also denaturation of proteins (Wu & Lee 2008). In U. compressa, the effect 
of elevated levels of Cu is attenuated by activation of the antioxidant enzyme APX, synthesis of 
ascorbate and consumption of glutathione and water-soluble phenolic compounds (Ratkevicius et al. 
2003). U. compressa cells exposed to Cu have elevated [Ca2+]cyt and ROS, which determines the 
differential activation of antioxidant and defence enzymes (Gonzalez et al. 2010). Elevated [Ca2+]cyt 
binds to and activates a plasma membrane-bound NADPH oxidase resulting in the production of 
H2O2. Signal transduction proteins such as calmodulin and calcium-dependent protein kinase, which 
are activated in response to elevated [Ca2+]cyt, are upregulated in response to Cu stress (Contreras-
Porcia et al. 2011). The Cu-induced [Ca2+]cyt release is due to the activation of NAADP-, ryanodine- 
and IP3-sensitive channels and is activated by NO and H2O2 (Gonzalez et al. 2012). 
 
Future directions for Ulva studies 
As outlined above, the settlement behaviour of Ulva spores on surfaces of varying topographies and 
chemistries has been extensively analysed. Studies on cell signalling have become more common as 
advanced techniques have become available. Recently there has been a focus on developing Ulva as 
a model organism for use in studies investigating both the evolution of multicellular development 
and the cross-kingdom interactions between algae and bacteria that influence growth and 
development in Ulva (Wichard et al. 2015). Ulva mutabilis and Ulva linza can now be grown in axenic 
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laboratory-based culture (Spoerner et al. 2012; Vesty et al. 2015), which has enabled generation of 
transgenic Ulva for the first time (Oertel et al. 2015) (Table 2). Axenic cultures and the 
transformation protocol (Oertel et al. 2015) are now readily available and an Ulva mutabilis genome-
sequencing project is currently underway (Wichard et al. 2015). Once the genome is available, it will 
be possible to use reverse genetic approaches to knock-out or modify key genes such as those 
involved in cell adhesion (including those identified from ESTs (Stanley et al. 2005)) to analyse the 
effects on spore adhesion. The genetic tools are therefore becoming available to further understand 
the little-studied cell biology of Ulva, which should provide further insight into future target areas for 
antifouling strategies. 
 
Summary of diatom biology and adhesion 
Raphid diatoms (Figure 5) lack flagella and move and adhere to a surface only through the secretion 
of extracellular polymeric substances (EPS) from a slit(s) called the raphe (Round et al. 1990; 
Wetherbee et al. 1998). Raphid diatoms are the most common early algal colonisers of substrata in 
seawater where they form the primary biofilm together with bacteria and other algae (Wetherbee et 
al. 1998). Araphid diatoms such as Toxarium undulatum also foul surfaces (Chiovitti et al. 2008), but 
are not as prevalent as raphid diatoms (Hunsucker et al. 2014). Initial adhesion is an active process 
requiring activation of adhesion mechanisms to allow binding to the substratum (Edgar & Pickett-
Heaps 1983). Mucilage strands are secreted through the raphe, with the driving force for movement 
being provided by myosin motors attached to actin filaments connected to the mucilage strands by 
transmembrane connectors (Poulsen et al. 1999). For a comprehensive review of the biology of 
fouling diatoms including their mechanisms of adhesion and structural properties of the adhesive 
see Molino & Wetherbee (2008). 
 
There may be several different polymers involved in the process of permanent attachment, or it may 
involve only one polymer that undergoes different degrees of cross-linking (Wigglesworth-Cooksey 
& Cooksey 1992; Wustman et al. 1997; Wustman et al. 1998; Chiovitti et al. 2006). Recently a new 
method for the isolation and extraction of diatom adhesive has been discovered, which results in 
less than 2% contamination by cellular material (Poulsen et al. 2014). The adhesive comprises 
predominantly of carbohydrates similar to Ulva spore adhesive and the exopolysaccharides of 
bacterial biofilms but with additional highly hydrophilic amino acids. Two different diatoms were 
tested (Craspedostauros australis [Figure 5c] and Amphora coffeaeformis) that differed in their 
carbohydrate to protein composition - ~4:1 for A. coffeaeformis and ~2:1 for C. australis. Earlier 
experiments by Molino et al. (2006) had also shown a difference in the adhesive composition 
between the two species which may explain why they have differing strength of attachment 
(Holland et al. 2004). Diatoms are able to vary the composition of their adhesive, with carbohydrates 
produced by the planktonic and biofilm cells of Amphora rostrate being significantly different 
(Khodse & Bhosle 2010). Abdullahi et al. (2006) also found that the diatom Phaedactylum 
tricornutum varied its carbohydrate production in response to environmental conditions, indicating 
that there must be a degree of signal perception (see ‘Intracellular signalling in diatoms’ section) – it 
is not possible to say specifically that EPS production changed as there is a high likelihood of 
contamination from intracellular stores of chrysolaminaran due to the methods used (Chiovitti et al. 
2004).  
 

Sensing of surfaces by diatoms 
A list of factors affecting diatom attachment, including salinity, light and colour of coating are given 
in Table 1. Recent research has shown that motility of benthic diatoms (Seminavis robusta and 
Navicula sp. [Figure 5d]) is silicate-directed (Bondoc et al. 2016), with cell speed and motility 
increasing in cells under limiting conditions of dissolved silicic acid (dSi) and decreasing upon 
addition of dSi in a chemokinetic response. Evidence of chemotaxis towards localised hotspots of dSi 
was also seen indicating that benthic diatoms selectively perceive and navigate towards dSi, which is 
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an essential resource. When diatoms were exposed to structurally-related dissolved germanium 
dioxide, cells moved away from the source rather than towards indicating that the specific response 
to dSi is receptor-mediated. A specific chemotaxic response was also seen in A. coffeaeformis to D-
glucose with negative chemotaxis to D-mannose (a toxic sugar) and L-glucose (Cooksey & Cooksey 
1988).    
 
Studies into bacteria and diatom interactions are covered in a review by Amin et al. (2012) and have 
not been as extensively studied as in Ulva. Alphaproteobacteria such as Sulfitobacter and 
Roseobacter are the most prevalent bacteria associated with diatoms (Schafer et al. 2002): these 
bacteria are also commonly found with Ulva (Tait et al. 2009; Spoerner et al. 2012). Buhmann et al. 
(2011) found that the presence of bacteria affects the adhesion of Achnanthidium minutissimum, 
with no biofilm forming when cells are kept axenically, and Mieszkin et al. (2012) found that mixed 
biofilms of bacteria enhance attachment of Navicula incerta. Windler et al. (2015) describe the 
identification of a sterile bacterial supernatant that induces capsule- and biofilm formation in the 
freshwater diatom Achnanthidium minutissimum suggesting a role for bacterial-diatom signalling 
such as through quorum sensing. The development of a reliable bioassay for determining bacterial 
and diatom interactions is described which will enable further investigation into possible 
interkingdom signalling molecules (Windler et al. 2015). 
 
The effect of surface topographies on diatom attachment are discussed in depth in the review by 
Scardino (2009). When four raphid diatom species with differing cell widths were exposed to various 
surface topographies, cells showed reduced attachment to surfaces where the texture was smaller 
than the cell width and conversely attachment increased when the texture was larger than the cell 
width (Scardino et al. 2006; Scardino et al. 2008) (Table 1). Decker et al. (2013) developed the 
Surface Energetic Attachment model, which correctly predicted that N. incerta attachment 
decreased with decreasing contact area on a pillar pattern. Effective antifouling technologies such as 
the pillar surface topographies and superhydrophobic surfaces maintain air pockets between the 
features reducing the potential attachment sites for the diatoms N. incerta (Decker et al. 2013) and 
A. coffeaeformis (Wu et al. 2013). 
 

Diatom adhesion to foul-release coatings 
Nonbiocidal coatings such as those based on PDMSe have been effective in reducing fouling by 
macroalgae and invertebrates (Candries et al. 2003). These hydrophobic, low modulus coatings do 
not prevent colonisation by fouling organisms but are designed as ‘‘fouling-release’’ coatings; that is, 
they ‘‘release’’ adhered organisms by the hydrodynamic forces generated when a ship moves 
through the water. Paradoxically, and in contrast to macroalgae such as Ulva, diatoms adhere more 
strongly to hydrophobic coatings and, conversely, adhere more weakly to hydrophilic surfaces such 
as glass (Holland et al. 2004; Krishnan et al. 2006; Stanley & Callow 2007; Thompson et al. 2008; 
Alles & Rosenhahn 2015). Diatom genera requiring the highest pressure for removal from foul-
release coatings are Achnanthes, Amphora, Cocconeis, Navicula and Synedra which are all benthic 
diatoms, centric diatoms do settle but are easily removed in dynamic conditions (Hunsucker & Swain 
2016). On organosilica-based xerogels which varied in their surface chemistry (hydrocarbon, 
fluorocarbon, or aminoalkyl), initial attachment of Navicula perminuta was similar but removal 
increased with increasing critical surface tension and wettability (Finlay et al. 2010).  
 
Recent approaches to testing diatom adhesion have investigated removal of a developed biofilm 
rather than only diatom cells to make observations more comparable to natural conditions (Hodson 
et al. 2012; Finlay et al. 2013). Hodson et al. (2012) used a novel turbulent flow channel that allowed 
direct observation and recording of cell populations on the test surface whilst cells were continually 
submerged to prevent cellular damage by exposure to air. It was previously shown that cells settled 
on the hydrophobic surface PDMSe experience stress and cell death when accidentally exposed to 
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air (Thompson 2007). C. australis cells settled on PDMSe were exposed to air by allowing the 
seawater medium to run off the slide, resulting in a rapid increase in cell death and production of 
NO, with over 90% cells being dead after 1 min exposure (Thompson 2007). It is therefore important 
to keep cells hydrated during adhesion experiments using hydrophobic coatings in order to record 
responses of live, and not dead, cells. Using a newly developed water channel, Hodson et al. (2012) 
found that when cells were exposed to shear stress for longer periods (180 min cf. 5 min), 
differences in removal between surfaces of varying wettabilities was reduced. Differences in 
adhesive properties were also found between three isolates of A. coffeaeformis indicating a large 
degree of adaptability in this species, which may be the reason for their high success rate of 
adapting and colonising antifouling coatings.  
 
Finlay et al. (2013) also developed a novel biofilm channel to culture diatom cells with the additional 
variable of changing bed shear stress of 0-2.4 Pa. Navicula biofilms were grown for three days and 
there was no exposure to air during settlement as cells were settled in the same position as they 
were exposed to flow (although taken out underwater for adhesion strength tests). Adhesion 
strength of the cultured diatom slime layer, which consisted of both cells and EPS secretions, was 
higher than individual cells on clean surfaces. When cells were cultured under a shear stress of 1.3 
Pa on AWG the biofilm did not persist, yet on PDMSe a biofilm was still present at 2.4 Pa containing 
tightly bound clumps and a greater proportion of cells lying on their valve (raphe side), which is 
thought to be hydrodynamically favourable.  
 
Alles & Rosenhahn (2015) tested the use of a microfluidic detachment assay commonly used in cell 
biological tests. The benefits of such a system are that it requires only a small number of cells, along 
with a small test surface area, with which a high variation in well-defined laminar flow conditions 
can be tested. The design also allows for cell adhesion to be tested without passing through the air-
water interface, with individual cells examined microscopically in situ whilst exposed to flow 
conditions. By studying removal microscopically it was possible to observe whether cells lying on 
their valve detached more easily than those on their girdle or vice versa. Again, more Navicula cells 
lay on their valve (therefore the raphe is in contact with the surface) on a hydrophobic surface 
compared to a hydrophilic one (43% on the hydrophobic DDT compared to 30% on the hydrophilic 
EG6OH), however there was no significant effect of cell orientation in the critical shear stress 
required to remove cells (Alles & Rosenhahn 2015), which may be due to the high degree of 
variability in adhesion strength seen.  
 
Intracellular signalling in diatoms 
It has only recently become recognised that diatoms have sophisticated cell signalling pathways 
allowing them to detect and respond to physiochemical changes in their environment.  
 
Cytosolic calcium 
An early study identified Ca2+ as being essential in diatom adhesion but did not identify whether it 
was extracellular or [Ca2+]cyt that was important, or both (Cooksey 1981). As [Ca2+]cyt is involved in so 
many cellular activities (Berridge et al. 1998) including exocytosis, which is essential for transport of 
adhesive vesicles containing EPS to the raphe in raphid diatoms (Wetherbee et al. 1998), further 
studies investigated the role of [Ca2+]cyt. Use of a Ca2+ transport inhibitor (D-600) that reduced 
adhesion suggested that there is an intracellular role for Ca2+ (Cooksey & Cooksey 1986). Advances in 
the use of transgenic diatoms, specifically P. tricornutum, have confirmed that Ca2+ signalling 
controls many aspects of diatom function (Falciatore et al. 2000), as it does in plants (Valmonte et al. 
2014). Falciatore et al. (2000) developed transgenic P. tricornutum containing the Ca2+-sensitive 
photoprotein aequorin and discovered various Ca2+-sensitive responses to shear stress, osmotic 
stress and iron. McLachlan et al. (2012) used fluorescent AM-ester Ca2+-indicators to investigate 
[Ca2+]cyt signalling in relation to phototaxis in N. perminuta, which has been well studied for its 
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adhesion to fouling surfaces (McLachlan et al. 2012). The photophobic response seen after exposure 
to high irradiance blue light (450-490 nm) was triggered by a localised, transient increase in [Ca2+]cyt 
at the tip of the cell, implying a role for Ca2+ signalling in the switching mechanism required for cell 
reversal. However, further investigations using dextran dyes introduced by biolistic bombardment 
(as used in P. tricornutum in Falciatore et al. (1999)) would be beneficial to ensure that the increases 
in dye fluorescence are due to changes in [Ca2+]cyt

 and no other factors (see Thompson et al. (2007) 
for problems encountered when using AM-ester Ca2+-indicators in algae). Using intracellular Ca2+ 
release inhibitors and Ca2+ channel inhibitors it was shown that the source of [Ca2+]cyt was from 
intracellular stores and not due to influx of extracellular Ca2+ (McLachlan et al. 2012). Also of interest 
was the localisation of [Ca2+]cyt

 in the vicinity of the raphe in motile cells where the actin/myosin 
motility system is located, supporting a role for Ca2+ in generating motive force in diatoms. Enhanced 
NO production was also seen in the vicinity of the raphe of S. robusta (Thompson et al. 2008) where 
it could affect motility and adhesion (see later section ‘Nitric oxide’).  
 
Ca2+-signalling pathways are important in cells of P. tricornutum in response to growth in Fe-limiting 
conditions, with upregulated mRNA levels of Ca2+ protein kinase, Ca2+ channels and the oxidative 
stress responsive protein annexin (Allen et al. 2008). Further evidence for Ca2+-signalling pathway 
components has been found from the diatom EST database with ESTs relating to Ca2+ transporting 
ATPase, annexin and domains containing Ca2+-binding EF hands having been identified (Maheswari 
et al. 2010) (Table 2). Ethylenediaminetetraacetic acid (EDTA) is a chelating agent which sequesters 
Ca2+ and other metal ions such as Fe3+. Chiovitti et al. (2008) found that adhesion is prevented in T. 
undulatum by the addition of EDTA, which destabilises the adhesive proteins. The adhesive 
nanostructure could be restored by the addition of cations including Ca2+ therefore Ca2+ may act to 
cross-link and stabilise the glycoproteins in the adhesive. In P. tricornutum, a putative cell adhesion 
protein has been identified containing Ca2+-binding domains, which was also proposed to have a role 
in cross-linking (Willis et al. 2014). However, none of the cell adhesion proteins identified in Willis et 
al. (2014) were shown to be present in the adhesive and therefore their precise role in diatom 
adhesion remains unknown. Another component of eukaryotic Ca2+ signalling pathways appears to 
be conserved in diatoms with the discovery of a G-protein coupled receptor that responds to 
environmental stress and effector proteins including phospholipase C and protein kinase C all being 
present in P. tricornutum, T. pseudonana and the raphid diatom Fragilariopsis cylindrus (Port et al. 
2013).  
 
Stress responses in diatoms and their link to biofouling 
Salinity stress 
At elevated salinities P. tricornutum increases production of EPS and modifies its composition to 
include a higher proportion of uronic acids and sulphates, which may allow the EPS to retain more 
water (Abdullahi et al. 2006). Steele et al. (2014) have shown that diatom EPS plays a protective role 
in response to salinity stress in Cylindrotheca closterium, which could explain the increased 
production of EPS under salinity stress seen in P. tricornutum. De Martino et al. (2011) found that 
changes in salinity and temperature caused P. tricornutum to change morphotype, with stressful 
conditions inducing a change from fusiform or triradiate to oval or round cells. The oval morphotype 
is benthic, possessing a raphe enabling it to move and form biofilms, whereas the other 
morphotypes are planktonic. By converting to the biofilm-forming morphotype cells will be more 
protected from salinity stress, as cells in a biofilm are surrounded by EPS. Examination of expressed 
sequence tags (ESTs) showed that hyposaline, low temperature conditions induced genes involved in 
stress signalling pathways (De Martino et al. 2011).  
 
Response to heavy metals  
As well as diatoms being persistent foulers of foul-release coatings, they are also a problem on Cu-
containing AF paints due to their tolerance to heavy metals. Diatoms that are tolerant to Cu, such as 
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Amphora and Navicula, possess Cu-sequestering intracellular bodies that maintain low 
concentrations of free Cu+ in the cells (Daniel & Chamberlain 1981). An additional method of 
tolerating high Cu levels in A. coffaeaformis is through complexing of EPS polysaccharides with Cu 
(Robinson et al. 1992).  
 
Stress responses in diatoms in response to heavy metals have not been as extensively studied as in 
Ulva and have focused on stress induced by limited iron bioavailability. The effects of Cu on P. 
tricornutum however have been investigated (Morelli & Scarano 2004), with glutathione and its 
derived peptides (phytochelatins [PC]) forming the first line of defence by binding free Cu+ ions 
intracellularly. Prolonged exposure leads to the activation of antioxidant enzymes (similar to that 
seen in Ulva) with CAT being the major scavenging enzyme although other enzymes (SOD and GR) 
also counteracted the oxidative stress induced by Cu. Prolonged Cu exposure induces membrane 
damage. Genes encoding superoxide dismutase (MnSOD) have been discovered in both T. 
pseudonana (Wolfe-Simon et al. 2006) and P. tricornutum (Vardi et al. 2008). 
 
Nitric oxide signalling 
Cell biological studies on the diatom P. tricornutum using fluorescent imaging discovered that 
[Ca2+]cyt together with NO were the basis of a sophisticated stress surveillance system (Vardi et al. 
2006). Elevations of [Ca2+]cyt from an intracellular source occurred after exposure to the diatom-
derived reactive aldehyde (2E,4E/Z)-decadienal (DD). The resulting stress response involves the 
production of NO via Ca2+-dependent Nitric Oxide Synthase-like activity, which either results in cell 
death or acclimation of the response. It was proposed that diatom cells can detect that neighbouring 
cells are stressed by sensing DD released by wounded cells. Calcium and NO-based signalling systems 
are then sensitised to induce resistance to further aldehyde exposure. In bloom conditions, the 
aldehyde concentrations reach a threshold, which then triggers population-level cell death and 
bloom termination. 
 
As NO signalling is important in diatom sensing systems, studies were carried out with the benthic 
diatom S. robusta to investigate whether there was differential production of NO on surfaces of 
varying physio-chemical properties (Thompson et al. 2008). NO was also artificially elevated using an 
NO donor to investigate the effects of NO on diatom adhesion. Measurements of NO made using the 
fluorescent NO indicator DAF-FM showed that different NO levels are seen in response to 
hydrophobic or hydrophilic surfaces (Figure 4c). On hydrophilic AWG where the adhesion strength of 
diatoms was low, NO production was 4-fold higher than on PDMSe, to which the cells adhered 
strongly. Interestingly, the converse was seen for spores of Ulva, with lower NO production on AWG, 
a surface to which they bind strongly (Thompson et al. 2010). Therefore it was hypothesised that 
both diatoms and spores of Ulva can detect a surface that is non-conducive to adhesion through the 
production of NO which can then modify the adhesive properties (by blocking adhesive production 
or leading to the production of a less sticky adhesive) making it easier for a diatom to move off the 
unfavourable surface, or in the case of Ulva spores prevent them from committing to permanent 
adhesion to a surface (Figure 4).  
 
Vardi et al. (2008) provided support for the hypothesis that NO plays a key role in surface perception 
in diatoms. A functional genomics approach was used to characterise a novel GTP-binding protein 
designated PtNOA (an orthologue of AtNOA in Arabidopsis) that is involved in NO production in P. 
tricornutum. When transgenic diatoms overexpressed the gene, NO production was elevated and 
oval morphotype cells showed reduced biofilm formation and reduced adhesion to both AWG and 
PDMSe. As the aldehyde DD leads to the production of NO in P. tricornutum and elevated NO 
reduces diatom adhesion, Leflaive & Ten-Hage (2011) investigated the effect of DD and NO on 
adhesion in the freshwater raphid diatom Fistulifera saprophila. Incubation with DD and an NO 
donor both reduced cell adhesion. The authors proposed that DD has an effect on the cellular 
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mechanisms involved with initial adhesion such as the cytoskeleton rather than secondary processes 
such as cross-linking (Vreeland et al. 1998), as the addition of DD to adhered cells did not reduce 
adhesion. As DD is produced by damaged cells, it may act as an environmental signal preventing cell 
attachment to unsuitable habitats, a point that may be of interest to those developing 
environmentally friendly coatings (see ‘Antifouling targets in relation to surface sensing and stress-
signalling’). 
 
Future directions for diatom studies 
In the post-genomic era, planktonic rather than benthic diatoms were initially the focus of genomic 
studies as the centric species T. pseudonana is used as a model for diatom physiology studies and 
has a relatively small genome. Molecular tools are now available for reverse genetics enabling gene 
knockouts in diatoms (De Riso et al. 2009; Lavaud et al. 2012; Nymark et al. 2016). A diatom EST 
database has been constructed for P. tricornutum and T. pseudonana grown under different growth 
conditions and subject to various abiotic stresses (Maheswari et al. 2009; Maheswari et al. 2010); 
and whole genome arrays of both diatoms have been sequenced (Armbrust et al. 2004; Bowler et al. 
2008) (Table 2), all of which should enable diatom cell biology to proceed with enhanced resolution. 
An example of using genome information to investigate diatom cell biology is the use of transgenic 
P. tricornutum to study membrane trafficking. Both P. tricornutum and T. pseudonana contain 
homologs of two vesicle transport proteins – the small GTPase Sec 4 and syntaxin (t-SNARE). 
Transgenic fusiform P. tricornutum with Sec4- and t-SNARE-fluorescent protein fusions were created 
to image vesicle movement (Siaut et al. 2007; A. Tanaka et al. 2015). If these same marker lines were 
used in cultures selected for the oval benthic diatom form then it would be possible to investigate 
membrane trafficking of adhesive vesicles to the raphe. Indeed, a recent study by Willis et al. (2014) 
used the oval, adherent form of P. tricornutum to test adhesion of transformed cells. A 
bioinformatics search of the genome was used to suggest candidate genes involved in cell adhesion. 
Cells were then transformed with overexpression of target genes-fluorescent protein fusions to 
enable localisation of the gene. All of the transgenic lines had improved cell adhesion compared to 
wild-type, implying that the genes identified may have a role in cell adhesion, however this requires 
further investigation such as the use of immuno-techniques and the generation of knock-out 
transformants. 
 
Genomic research on raphid diatoms is becoming more common with the genomes of Fistulifera 
solaris, Fragilariopsis cylindrus and Pseudo-nitzchia multiseries having been sequenced (Strauss 
2012; T. Tanaka et al. 2015; http://genome.jgi.doe.gov/Psemu1) (Table 2). S. robusta is currently 
being fully sequenced (chloroplast sequencing is described in Brembu et al. (2014)) and techniques 
for genetic transformation of A. coffeaeformis have been developed (Buhmann et al. 2014), which 
will enable the cell biology of fouling diatoms to be fully unravelled in the future.  
 
Now that more algal genomes are becoming available, there is increasing interest in linking studies 
at the genome level to the organism response (Mock et al. 2016). To investigate this, an upcoming 
area of interest is in experimental evolutionary studies where semi-continuous cultures of algae are 
used to study evolution in real time, a technique usually used to study bacterial evolution. The rapid 
generation time of the model green alga Chlamydomonas reinhardtii allowed experimental evolution 
experiments to select for changes in the production of extracellular matrix, leading to the 
appearance of multicellularity in only 219 days (Ratcliff et al. 2013). The technique was also used to 
study real-time evolution in the diatom Skeletonema marinoi (Scheinin et al. 2015) where adaptation 
to high CO2 resulted in increased growth rates, revealing that evolution can occur rapidly in marine 
diatoms. It may therefore be possible in the future to examine the genomic response of raphid 
diatoms to various antifouling coatings by using similar techniques to search for any adaptations to 
coatings.  
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Antifouling targets in relation to surface sensing and stress-signalling 
For an antifouling molecule to have an effect on a wide range of fouling organisms, it should be 
something that inhibits a universal process such as surface sensing and/or the signalling pathways 
that transduce the surface signal (Cooksey et al. 2009). There are four key areas that this review has 
focused on; Ca2+, stress, quorum sensing and NO. 
 
Calcium 
Adhesion in diatoms is Ca2+-dependent (Cooksey & Cooksey 1980; Cooksey 1981) with adhesion 
strength reduced in Amphora when Ca2+ entry into the cell was blocked (Cooksey et al. 2009) and 
motility was also reduced in N. perminuta. As Ulva spores require Ca2+ to move and use of Ca2+-
channel inhibitors reduced motility and subsequent settlement, it was not possible to investigate the 
effect of Ca2+ on settlement alone. However, the transient increases in [Ca2+]cyt seen at settlement 
imply a role for Ca2+ in the adhesion of Ulva spores (Thompson et al. 2007). Interfering with Ca2+ 
signalling such as through the addition of Ca2+-channel inhibitors to foul-release coatings is therefore 
likely to reduce adhesion of both algal spores and raphid diatoms.  
 
Stress 
Another potential antifouling strategy is to incorporate molecules that trigger stress responses into a 
coating. One such chemical is DD, which is available commercially in synthetic form and elicits NO 
generation in diatoms. DD reduces adhesion and thus allows diatoms to leave an unfavourable 
surface, in addition to inducing cell death at higher concentrations. DD caused loss of motility in the 
benthic diatoms Amphora, Navicula (Cooksey et al. 2009) and F. saprophila (Leflaive & Ten-Hage 
2011), and a significant reduction in F. saprophila, Nitzchia palea and Mayamea atomus biofilm 
formation occurred when DD was present in the agar (Leflaive & Ten-Hage 2011). Unfortunately, the 
effect of DD does not appear to be universal in fouling organisms. Whilst addition of DD results in 
reduced cell growth leading to cell death in the diatom Thalassiosira weissflogii (Casotti et al. 2005), 
and reduces cell division of marine invertebrate embryos (Ianora et al. 2006), it appears that marine 
bacteria are able to show remarkable resistance to the aldehydes in comparison to that shown by 
algae (Ribalet et al. 2008). In addition, DD is a toxic chemical which has been shown to affect non-
target organisms leading to reproductive failure in the polychaete Nereis virens (Caldwell et al. 
2011), which is used in aquaculture (Olive 1999). Therefore full environmental testing of the 
compound with toxicity assays would be required before DD could be incorporated into antifouling 
coatings to prevent a repeat of the problems with toxic coatings such as occurred with TBT. 
 
Quorum Sensing 
QS inhibitors are another area of interest for interfering with cell signalling, this time between 
bacteria and algae. A commercially available QS inhibitor is kojic acid, which in addition to inhibiting 
the formation of a marine biofilm by 3-fold was also found to reduce density of A. coffeaeformis cells 
by ~4 fold (Dobretsov et al. 2011). Whether kojic acid is interfering with QS signalling or causing a 
reduction in fouling by another method is not yet known; however the compound would seem a 
promising AF strategy. Unfortunately, disruption of AHL-signalling would not necessarily reduce algal 
spore fouling. Although AHL-deficient mutant biofilms inhibited spore settlement (Joint et al. 2002; 
Tait et al. 2005), spore germination and growth in the absence of AHLs is enhanced (Twigg et al. 
2014), which would result in increased drag on a ship’s hull.  
 
Nitric oxide 
A potentially more universal application to interfering with cellular sensing mechanisms would be to 
tether NO donors to antifouling coatings. Artificially elevating NO in diatoms and Ulva reduces both 
settlement and adhesion (Thompson et al. 2008; Thompson et al. 2010; Leflaive & Ten-Hage 2011). 
NO also weakens adhesion strength of bacteria (Charville et al. 2008; Werwinski et al. 2011) and 
animal cells such as platelets (Bohl & West 2000). There has been an explosion in interest in the use 
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of NO as a bacterial biofilm dispersal agent for surfaces in both clinical and industrial environments 
to control bacterial infections (Firoved et al. 2004; Barraud et al. 2006; Plate & Marletta 2012; 
Marvasi et al. 2014), with addition of an NO donor resulting in dispersal of fouling marine bacterial 
biofilms containing Pseudoalteromonas species (Werwinski et al. 2011). NO donors are also effective 
in reducing barnacle cyprid settlement (Y. Zhang et al. 2012) with NO implicated in the regulation of 
cement release in Amphibalanus (Gallus et al. 2013; Zhang et al. 2015), and the potential antifouling 
compound Cochliomycin A has been reported to reduce larval settlement rates of cypris larvae by 
activating the NO/cGMP pathway (Wang et al. 2016).  
 
Conclusion 
A number of potential areas for interfering with cell surface sensing and signalling mechanisms have 
been identified in this review. The most promising areas to focus on are the addition of Ca2+-channel 
inhibitors, the diatom-derived aldehyde DD, QS inhibitors and NO donors. These bioactive chemicals 
would need to be tethered to foul-release coatings with a self-polishing coating so that the bioactive 
surface is constantly replenished. Majumdar et al. (2008) used such a system with quaternary 
ammonium salts tethered to polysiloxane coatings, which also had foul-release characteristics. There 
are a number of factors that would need to be investigated for such coatings to be successful such 
as; any negative effects on non-target organisms including humans and marine organisms, a highly 
controlled release rate, cost effectiveness of the coatings, necessity for cleaning, and durability and 
stability in seawater. See Banerjee et al.(2011) for a review of the areas required for consideration in 
designing antifouling coatings including discussion on covalent-linking of NO-donors to a siloxane 
polymer. The authors believe a NO-releasing coating should be investigated as there is the potential 
for a universal antifouling strategy that would reduce settlement and adhesion in algae, barnacles 
and bacteria. As the cell biology of fouling organisms is still relatively unknown and an area that is 
likely to yield new information in the post-genomic era, there is great potential for new antifouling 
targets to be discovered.   
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Table 1 Factors that affect Ulva spore settlement and diatom adhesion. 
 
 Ulva sp Diatoms 

Effects References Effects References 

Surface properties 

Wettability 

 

 

Topography 

 

Increasing spore settlement with increasing 
contact angle (hydrophobicity). 
Spore adhesion strength is greatest on a 
hydrophilic surface. 
 
 
Spores choose to settle in depressions and 
corners with a feature size similar to that of 
the spore body (ca. 5µm). Complex 
topographies reduce spore settlement. 

 

M.E. Callow et al. 2000 
Finlay et al. 2002 
Finlay, M.E. Callow, et 
al. 2002 
Ista et al. 2004 
 
Hoipkemeier-Wilson et 
al. 2004 
Carman et al. 2006 
Schumacher, Carman, 
et al. 2007 

 
 
No effect of wettability on initial settlement of 
diatoms. 
Adhesion strength is greatest on a hydrophobic 
surface.  
 
 
Reduced diatom attachment to surfaces where the 
texture was smaller than the cell width. 
Diatom attachment increases with increasing 
numbers of attachment points on a surface. 

 
Finlay, M.E. Callow, et al. 
2002 
Holland et al. 2004 
 
 
 
 
Scardino et al. 2006 
Scardino et al. 2008 
Decker et al. 2013 

Salinity Increased settlement at higher salinities up to 
an optimum (25-30‰ in U. intestinalis).  

Christie & Shaw 1968 Increasing salinity results in increased EPS 
production. 

Abdullahi et al. 2006 

Temperature Increased settlement at higher temperatures 
up to an optimum temperature (of 25-30 ˚C in 
U. intestinalis). 

Christie & Shaw 1968 
Callow et al. 1997 

Species-specific effects on adhesion. 
Increased temperature causes increased motility up 
to 35-40˚C, beyond which motility stops.  

Cohn 2001 
 

Light Increased initial settlement rate in daylight 
but it is not essential for settlement.  

Christie & Shaw 1968 
 

Increased EPS production in darkness. 
High intensity light triggers cell reversal therefore 
cells move away to lower intensity light. 
Light from below inhibits settlement of Navicula. 

Smith & Underwood 1998 
Cohn et al. 2004 
 
Cao et al. 2011 

Colour of coating Spores prefer to settle on black surfaces 
rather than white. 
Sporeling growth is delayed on black surfaces. 

Swain et al. 2006 Including a glow-in-the-dark phosphor layer in an 
antifouling paint reduces initial settlement density 
of Navicula. 

Cao et al. 2013 

Presence of 
bacteria 

Bacterial biofilms of mixed species enhance 
spore settlement but biofilms of single 
species can either attract, inhibit or have no 
effect on settlement. 

Joint et al. 2000 
Patel et al. 2003 
Mieszkin et al. 2012 

Bacterial biofilms of mixed species enhance 
attachment of Navicula. 
Cells of Achnanthidium minutissimum do not adhere 
when kept axenically.  

Mieszkin et al. 2012 
 
Buhmann et al. 2011 
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Table 2 State of our molecular knowledge of fouling alga including the green alga Ulva and various 
planktonic and raphid diatoms. In addition, the Marine Microbial Eukaryote Transcriptome Sequencing 
Project has sequenced diatom transcriptomes, which are publicly available at: 
http://marinemicroeukaryotes.org/  
 

Organism Genome Transcripts/EST Transformation 

Ulva linza X 
 

 
Stanley et al. (2005) 

X. Zhang et al. (2012) 

X 

Ulva mutablis  
In progress (Wichard et al. 

2015) 

X  
Oertel et al. (2015) 

Planktonic diatoms  
Chaetoceros gracilis X 

 
X 
 

 
Ifuku et al. (2015) 

Cyclotella cryptica  
Traller et al. (2016) 

 
Traller et al. (2016) 

 
Dunahay et al. (1995) 

Thalassiosira oceanica  
Lommer et al. (2010) 
Lommer et al. (2012) 

X 
Lommer et al. (2012) 

X 

Thalassiosira pseudonana  
Armbrust et al. (2004) 

 
Maheswari et al. (2009) 

 
Poulsen et al. (2006) 

Shrestha & Hildebrand (2015) 
Raphid diatoms  
Amphora coffeaeformis X  

Buhmann et al. (2014) 
 

Buhmann et al. (2014) 
Cylindrotheca fusiformis X X  

Fischer et al. (1999) 
Fistulifera saprophila (syn 
Navicula saprophila) 

X X  
Dunahay et al. (1995) 

Fistulifera solaris  
T. Tanaka et al. (2015) 

X  
Muto et al. (2013) 

Fragilariopsis cylindrus   
Strauss (2012) 

 
Mock et al. (2005) 

X  

Phaeodactylum tricornutum  
Bowler et al. (2008) 

 
Maheswari et al. (2009) 

 
Apt et al. (1996) 

Pseudo-nitzchia arenysensis  
 

X 
 

 
 Di Dato et al. (2015) 

 
Sabatino et al. (2015) 

Pseudo-nitzchia delicatissima X  
 Di Dato et al. (2015) 

X 

Pseudo-nitzchia multiseries  
http://genome.jgi.doe.gov

/Psemu1/Psemu1 

 
Boissonneault et al. (2013) 

X 

Pseudo-nitzchia multistriata  
In progress (Ferrante 

unpublished) 

 
 Di Dato et al. (2015) 

 
Sabatino et al. (2015) 

Seminavis robusta Chloroplast (Brembu et al. 
2014) 

X  
Kirupamurthy (2014) 
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Figure 1 (a) Diagrammatic view of a motile Ulva spore illustrating key features. The smaller image shows 
the swimming spore and its four flagella. c = chloroplast, e = eyespot, p = pyrenoid, m = mitochondria, n 
= nucleus, g = Golgi body, v = vesicles containing adhesive, f = flagellum, ap = apical papilla. (b) 
Swimming and settled Ulva spores at t = 0 (left) and t = 5 min (right). Those marked with a black 
arrowhead are still swimming whilst the rest of the cells have already settled. Note the presence of 
flagella in motile cells (white arrowheads) and the spherical nature of the settled cells compared to 
motile cells, which are more elongate. 
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Figure 2 Localisation of FM 1-43 labelling in swimming and settled spores indicating membrane 
internalisation via endocytosis. (a) Confocal images of swimming spores incubated in the presence of FM 
1-43 for 3 min. The distorted lines indicate that the cells are moving. Only the plasma membrane is 
labelled with FM 1-43. Bar = 10 µm. (b) Spores that have settled whilst incubated with FM 1-43 for 15 
min. All settled spores have an interior cytoplasmic spot of FM 1-43 fluorescence. Bar = 20 µm. (c) A 
settling spore with flagella (arrows) present at t = 0. At t = 1 min the flagella have been lost and a spot of 
internalised dye (arrowheads) has formed at the anterior region which is more pronounced at t = 5 min. 
Figure reproduced with permission from Plant, Cell & Environment (John Wiley and Sons). 
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Figure 3 Proposed models for the role of elevated cytosolic Ca2+ at spore settlement. 1) The swimming 
spore is attracted to a surface by several cues. 2) The spore temporarily binds and explores the surface 
rotating on a detachable pad on its apical papilla. The favourable signals cause Ca2+ channels to open in 
the plasma membrane allowing Ca2+ to flood in. 3) Microtubule hypothesis: Ca2+ acts directly to activate 
the transport of the adhesive vesicles possibly along microtubules/microfilaments and allows fusion of 
vesicles with the plasma membrane resulting in the formation of the adhesive pad (6). 4) Signal 
transduction hypothesis: Ca2+ acts indirectly by binding with a Ca2+ binding protein such as calmodulin. 
5) The Ca2+ binding protein activates protein kinases to start a signalling cascade resulting in the release 
of adhesive vesicles to form an adhesive pad (6). Internal release of Ca2+ may also be important, and can 
be triggered by Ca2+ influx through the plasma membrane. 
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Figure 4. Models for the possible action mechanisms of nitric oxide (NO) in relation to surfaces in Ulva 
spores (a&b) and the diatom Seminavis (c).  (a) Spores are less likely to settle in the presence of high 
NO. Those spores that do settle are removed more easily from the substratum as the adhesive fails to 
cure. Spores that settle under normal NO levels release adhesive which undergoes full curing involving 
cross linking reactions. The spore adhesive is then firmly adhered to the substratum and not easily 
detached when exposed to flow. NO readily diffuses out from cells so will be present in the extracellular 
medium. (b) On a hydrophobic surface (such as Intersleek 700, contact angle 109˚), the spore releases 
adhesive but it does not spread far. The spore may sense this through mechanotransducing receptors 
leading to an increase in the production of NO. Spores settled on hydrophobic surfaces are easier to 
remove. On a hydrophilic surface (such as polyurethane, contact angle 45˚), the spore releases adhesive 
and it spreads easily. There is no signal sensed that the surface is stressful so extra NO is not produced. 
Spores settled on a hydrophobic surface are difficult to remove when exposed to flow. (c) Seminavis 
detects the adhesiveness of a surface through an unknown signal. On a surface that the cell does not 
adhere to strongly (hydrophilic), the signal causes the production of NO in the cell. NO then either 
blocks the secretion of adhesive, making the cell more likely to detach and move off the surface, and⁄or 
NO causes the production of a less sticky adhesive that is more conducive to movement, resulting in 
reduced attachment strength. When Seminavis is adhered to a surface that it sticks to well 
(hydrophobic), there is constitutive production of NO that is necessary for growth but NO is not 
significantly elevated and therefore the cell does not move off the surface. When NO is elevated due to 
the addition of the NO-donor SNAP, adhesion is reduced through the same pathways as on a hydrophilic 
surface. SNAP, S-nitroso-N-acetylpenicillamine. 
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Figure 5 (a) Diagrammatic view of a raphid diatom (reconstructed from an electron micrograph of 
Navicula cuspidata in Edgar & Pickett-Heaps (1982)), illustrating key features. chl = chloroplast, c = 
cytosol, v = vacuole, n = nucleus. (b-d) Light microscope images of the raphid diatoms (b) Seminavis 
robusta (bar = 20 µm), (c) Craspedostauros australis (bar = 20 µm) and (d) Navicula incerta (bar = 5 µm). 
The diatoms are shown in both valve view (left) and girdle view (right). Image of Navicula courtesy of 
J.A. Finlay, University of Newcastle. 
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Supplementary Information 
 
List of abbreviations used: 
 
AF  antifouling 
AHLs   N-acylhomoserine lactones 
APX   ascorbate peroxidase 
AWG   acid washed glass 
[Ca2+]cyt   cytosolic calcium 
CAT   catalase 
cGMP   cyclic guanosine monophosphate 
DAF-FM 4-amino-5-methylamino-2’,7’-dichlorofluorescein 
DCFH-DA  dichlorodihydrofluorescein diacetate 
DD  2E,4E/2-decadienal 
DDT   dichlorodiphenyltrichlorethane 
EDTA  ethylenediaminetetraacetic acid 
EPS  extracellular polymeric substances 
ESTs   expressed sequence tags 
FOTS   tridecafluoroctyl-triethoxysilane 
GR   glutathione reductase 
IP3   inositol triphosphate 
NAADP   nicotinic acid adenine dinucleotide phosphate 
NADPH   nicotinamide adenine dinucleotide phosphate 
NO   nitric oxide 
NOS  nitric oxide synthase 
PC   phytochelatins 
PDMSe   polydimethylsiloxane elastomer 
PEG   polyethylene glycol 
QS   quorum sensing 
ROS   reactive oxygen species 
SAM   self-assembled monolayer 
SNAP   S-nitroso-N-acetylpenicillamine 
SNARE  soluble N-ethylmaleimide-sensitive factor attachment protein receptor 
SOD   superoxide dismutase 
TBT   tributyltin 
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