274 research outputs found

    Array processing in cryoseismology: a comparison to network-based approaches at an Antarctic ice stream

    Get PDF
    Seismicity at glaciers, ice sheets, and ice shelves provides observational constraint on a number of glaciologi- cal processes. Detecting and locating this seismicity, specifi- cally icequakes, is a necessary first step in studying processes such as basal slip, crevassing, imaging ice fabric, and iceberg calving, for example. Most glacier deployments to date use conventional seismic networks, comprised of seismometers distributed over the entire area of interest. However, smaller- aperture seismic arrays can also be used, which are typically sensitive to seismicity distal from the array footprint and re- quire a smaller number of instruments. Here, we investigate the potential of arrays and array-processing methods to de- tect and locate subsurface microseismicity at glaciers, bench- marking performance against conventional seismic-network- based methods for an example at an Antarctic ice stream. We also provide an array-processing recipe for body-wave cryoseismology applications. Results from an array and a network deployed at Rutford Ice Stream, Antarctica, show that arrays and networks both have strengths and weaknesses. Arrays can detect icequakes from further distances, whereas networks outperform arrays in more comprehensive studies of a particular process due to greater hypocentral constraint within the network extent. We also gain new insights into seismic behaviour at the Rutford Ice Stream. The array de- tects basal icequakes in what was previously interpreted to be an aseismic region of the bed, as well as new icequake observations downstream and at the ice stream shear mar- gins, where it would be challenging to deploy instruments. Finally, we make some practical recommendations for future array deployments at glaciers

    Evolution of foreland basin fluvial systems in the mid-Cretaceous of Utah, USA (upper Cedar Mountain and Naturita formations)

    Get PDF
    ACKNOWLEDGEMENTS This work was funded by the SAFARI group. We are deeply grateful to Joe Phillips, Sean Kelly, James Mullins, Ryan King and Jostein Myking Kjærefjord for help in the field. We would also like to thank Associate Editor, Christopher Fielding, for handling the review of this paper. Additionally we thank reviewers Benjamin Cardenas and Brian Currie for their comments and suggested revisions which have greatly enhanced this paper. Open Access via the Jisc Wiley AgreementPeer reviewedPublisher PD

    Automated shear-wave splitting analysis for single- and multi- layer anisotropic media

    Get PDF
    Shear-wave velocity anisotropy is present throughout the earth. The strength and orientation of anisotropy can be observed by shear-wave splitting (birefringence) accumulated between earthquake sources and receivers. Seismic deployments are getting ever larger, increasing the number of earthquakes detected and the number of source-receiver pairs. Here, we present a new Python software package, SWSPy, that fully automates shear-wave splitting analysis, useful for large datasets. The software is written in Python, so it can be easily integrated into existing workflows. Furthermore, seismic anisotropy studies typically make a single-layer approximation, but in this work we describe a new method for measuring anisotropy for multi-layered media, which is also implemented. We demonstrate the performance of SWSPy for a range of geological settings, from glaciers to Earth's mantle. We show how the package facilitates interpretation of an extensive dataset at a volcano, and how the new multi-layer method performs on synthetic and real-world data. The automated nature of SWSPy and the discrimination of multi-layer anisotropy will improve the quantification of seismic anisotropy, especially for tomographic applications. The method is also relevant for removing anisotropic effects, important for applications including full-waveform inversion and moment magnitude analysis

    Lateglacial and Early Holocene palaeoenvironmental change and human activity at Killerby Quarry, North Yorkshire, UK

    Get PDF
    The hunter-gatherers that entered the British peninsula after ice-retreat were exploiting a dynamic, rapidly changing environment. Records of vegetation change and human occupation during the Lateglacial to Early Holocene in northern Britain are more commonly found at upland and cave sites. However, recent research highlights many areas of the Swale–Ure Washlands that preserve extensive environmental sequences in low-lying ice-wastage basins, channels and depressions. The Lateglacial–Early Holocene environment of Killerby Quarry, North Yorkshire, is investigated here using a multi-proxy approach of sedimentary ancient DNA (sedaDNA), pollen, sedimentological (geochemistry and portable optically stimulated luminescence), and rare and well-preserved archaeology (Lavvu structures and lithics). Results show that the wetland basins and kettleholes were small lakes or ponds in the Lateglacial surrounded by sedge-fen and birch woodland. A gradual (centennial scale) succession to reed-swamp and then marsh is seen by the Early Holocene. This environment formed the resource-scape for hunter-gatherer transitory settlement in both the Lateglacial (Late Upper Palaeolithic) and Holocene (Early Mesolithic), attracted by the rich communities of pond-related flora and fauna as well as easy strategic landscape access by way of the River Swale, an arterial route through the landscape connecting the North Sea Basin with the Pennine uplands via the palaeolakes around Killerby

    Array processing in cryoseismology

    Get PDF
    Seismicity at glaciers, ice sheets, and ice shelves provides observational constraint on a number of glaciological processes. Detecting and locating this seismicity, specifically icequakes, is a necessary first step in studying processes such as basal slip, crevassing, imaging ice fabric, and iceberg calving, for example. Most glacier deployments to date use conventional seismic networks, comprised of seismometers distributed over the entire area of interest. However, smaller-aperture seismic arrays can also be used, which are typically sensitive to seismicity distal from the array footprint and require a smaller number of instruments. Here, we investigate the potential of arrays and array-processing methods to detect and locate subsurface microseismicity at glaciers, benchmarking performance against conventional seismic-network-based methods for an example at an Antarctic ice stream. We also provide an array-processing recipe for body-wave cryoseismology applications. Results from an array and a network deployed at Rutford Ice Stream, Antarctica, show that arrays and networks both have strengths and weaknesses. Arrays can detect icequakes from further distances, whereas networks outperform arrays in more comprehensive studies of a particular process due to greater hypocentral constraint within the network extent. We also gain new insights into seismic behaviour at the Rutford Ice Stream. The array detects basal icequakes in what was previously interpreted to be an aseismic region of the bed, as well as new icequake observations downstream and at the ice stream shear margins, where it would be challenging to deploy instruments. Finally, we make some practical recommendations for future array deployments at glaciers

    Retinal arteriolar vascular reactivity in untreated and progressive primary open-angle glaucoma

    Get PDF
    PURPOSE. To determine (1) the magnitude of retinal arteriolar vascular reactivity to normoxic hypercapnia in patients with untreated primary open-angle glaucoma (uPOAG) or progressive (p)POAG and in control subjects and (2) the effect of treatment with 2% dorzolamide on retinal vascular reactivity in uPOAG. METHODS. The sample comprised 11 patients with uPOAG (after undergoing treatment, they became treated (t)POAG), 17 patients with pPOAG (i.e., manifesting optic disc hemorrhage), and 17 age-similar control subjects. The partial pressure of end-tidal CO 2 (PETCO 2 ) was stabilized at 38 mm Hg at baseline. After baseline (10 minutes), normoxic hypercapnia was then induced (15 minutes) with an automated gas flow controller. Retinal arteriolar and optic nerve head (ONH) blood hemodynamics were assessed. The procedures were repeated after treatment with 2% dorzolamide for 2 weeks in tPOAG. RESULTS. Baseline arteriolar hemodynamics were not different across the groups. In control subjects, diameter, velocity, and flow increased (P Ͻ 0.001) in response to normoxic hypercapnia. There was no change in all three hemodynamic parameters to normoxic hypercapnia in uPOAG, whereas only blood flow increased (P ϭ 0.030) in pPOAG. Vascular reactivity was decreased in uPOAG and pPOAG patients compared with that in control subjects. After treatment with topical 2% dorzolamide for 2 weeks, the tPOAG group showed an increase in diameter, velocity, and flow (P Յ 0.04) in response to normoxic hypercapnia. Similar trends were noted for ONH vascular reactivity. CONCLUSIONS. A reduced magnitude of arteriolar vascular reactivity in response to normoxic hypercapnia was shown in uPOAG and in pPOAG. Vascular reactivity improved after dorzolamide treatment in POAG. (Invest Ophthalmol Vis Sci

    The SAMI Galaxy Survey: Quenching of Star Formation in Clusters I. Transition Galaxies

    Get PDF
    We use integral-field spectroscopy from the SAMI Galaxy Survey to identify galaxies that show evidence of recent quenching of star formation. The galaxies exhibit strong Balmer absorption in the absence of ongoing star formation in more than 10% of their spectra within the SAMI field of view. These Hd-strong (HDS) galaxies (HDSGs) are rare, making up only similar to 2% (25/1220) of galaxies with stellar mass log(M-*/M-circle dot) > 10. The HDSGs make up a significant fraction of nonpassive cluster galaxies (15%; 17/115) and a smaller fraction (2.0%; 8/387) of the nonpassive population in low-density environments. The majority (9/17) of cluster HDSGs show evidence of star formation at their centers, with the HDS regions found in the outer parts of the galaxy. Conversely, the HDS signal is more evenly spread across the galaxy for the majority (6/8) of HDSGs in low-density environments and is often associated with emission lines that are not due to star formation. We investigate the location of the HDSGs in the clusters, finding that they are exclusively within 0.6R(200) of the cluster center and have a significantly higher velocity dispersion relative to the cluster population. Comparing their distribution in projected phase space to those derived from cosmological simulations indicates that the cluster HDSGs are consistent with an infalling population that has entered the central 0.5r(200,3D) cluster region within the last similar to 1 Gyr. In the eight of nine cluster HDSGs with central star formation, the extent of star formation is consistent with that expected of outside-in quenching by ram pressure stripping. Our results indicate that the cluster HDSGs are currently being quenched by ram pressure stripping on their first passage through the cluster

    Load-dependent collagen fiber architecture data of representative bovine tendon and mitral valve anterior leaflet tissues as quantified by an integrated opto-mechanical system

    Get PDF
    The data presented in this article provide load-dependent collagen fiber architecture (CFA) of one representative bovine tendon tissue sample and two representative porcine mitral valve anterior leaflet tissues, and they are stored in a MATLAB MAT-file format. Each dataset contains: (i) the number of pixel points, (ii) the array of pixel's x- and y-coordinates, (iii) the three acquired pixel intensity arrays, and (iv) the Delaunay triangulation for visualization purpose. This dataset is associated with a companion journal article, which can be consulted for further information about the methodology, results, and discussion of the opto-mechanical characterization of the tissue's CFA's (Jett et al. [1]).Supports from the American Heart Association Scientist Development Grant (SDG) Award (16SDG27760143), the Presbyterian Health Foundation Team Science Grants (C5122401), and the Oklahoma Center for the Advancement of Science and Technology (OCAST) Health Research program (HR-18-002) are gratefully acknowledged. CHL was in part supported by the institutional start-up funds from the School of Aerospace and Mechanical Engineering (AME) and the institutional research funding through the Faculty Investment Program from the Research Council and IBEST-OUHSC Interdisciplinary Funding at the University of Oklahoma. Open Access fees paid for in whole or in part by the University of Oklahoma Libraries.Ye
    corecore