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1. Data

The data presented in this document provide the load-dependent collagen fiber architecture (CFA)
of one representative bovine tendon tissue specimen (thickness¼1.25 mm, width¼15 mm,
length¼40mm) and two representative porcine mitral valve anterior leaflet (MVAL) tissue specimens
(effective testing region¼10�10 mm, MVAL-1: thickness¼0.75 mm, MVAL-2: thickness¼0.87mm).
The data sets in a MATLAB (MathWorks, MA) MAT-file format, as listed in Table 1, can be read by the
provided MATLAB script program (pSFDI_process.m). Each data set contains: (i) the number of
pixel points (nid_process, scalar), (ii) the array of pixel's x- and y-coordinates (coor, [2,

nid_process]), (iii) the acquired pixel intensity arrays (II_1_grid, II_2_grid, II_3_grid, each
array in [37 nid_process]), and (iv) the Delaunay triangulation for visualization purpose only
(tri, [ntri, 3]). By using the same provided MATLB script program, each data set can be analyzed,
and the CFA data, including the quantified collagen fiber orientation angle qfiber and the degree of
optical anisotropy (DOA), can also be visualized (bovine tendon: Fig. 1, MVAL-1: Fig. 2, MVAL-2:
Fig. 3).
2. Experimental design, materials, and methods

2.1. Tissue retrieval and storage

Bovine tendon and porcine hearts were acquired from a local USDA-approved slaughterhouse
(Country HomeMeats Co., Edmond, OK) and frozen in a standard freezer at�20 �C for storage purpose.
Previous studies have shown effectiveness of this tissue storage protocol for maintaining the tissue
integrity, microstructures and mechanics [2e7].

2.2. Tissue dissection and preparation

For tendon tissuepreparation, the central regionof bovine tendonwas excised into thin tissue sample
(width¼15 mm, length¼40 mm, thickness¼1.25 mm), with care taken to exclude the synovial sheath
membrane enclosing the tendon and align the strip lengthdirectionwith thenative tendon axis (Fig.1a).
For leaflet acquisition, porcineheartswere slowly thawed in a saline bath at roomtemperature andwere
then dissected to obtain the mitral valve anterior leaflet (MVAL) tissue specimens with an effective
testing size of 10�10 mm (Fig. 2a). The dissected tissue samples were placed in a labelled container of
phosphate-buffered saline (PBS), and stored in a refrigerator at 4 �C until testing (within two days).

2.3. Opto-mechanical testing e polarized spatial frequency domain imaging of the tissue samples

For the quantification of the load-dependent collagen fiber architecture (CFA) of both the bovine
tendon and MVAL tissue specimens, an integrated instrument (Fig. 4a), which combines a commercial
Table 1
Filenames of the load-dependent CFA data sets regarding the investigated tissue specimens.

Tissue Specimen Testing Condition MATLAB MAT-Filename

Bovine Tendon Unloaded, 0% longitudinal strain Tendon_0_percent_raw.mat
Loaded, 1% longitudinal strain Tendon_1_percent_raw.mat
Loaded, 2% longitudinal strain Tendon_2_percent_raw.mat
Loaded, 3% longitudinal strain Tendon_3_percent_raw.mat

MVAL Specimen 1 (MVAL-1) Unloaded MVAL-1_0_to_0_raw.mat
Equibiaxial tension, Tcirc:Trad¼1:1 MVAL-1_1_to_1_raw.mat
Non-equibiaxial tension, Tcirc:Trad¼1:0.25 MVAL-1_1_to_025_raw.mat
Non-equibiaxial tension, Tcirc:Trad¼0.25:1 MVAL-1_025_to_1_raw.mat

MVAL Specimen 2 (MVAL-2) Unloaded MVAL-2_0_to_0_raw.mat
Equibiaxial tension, Tcirc:Trad¼1:1 MVAL-2_1_to_1_raw.mat
Non-equibiaxial tension, Tcirc:Trad¼1:0.25 MVAL-2_1_to_025_raw.mat
Non-equibiaxial tension, Tcirc:Trad¼0.25:1 MVAL-2_025_to_1_raw.mat



Fig. 1. CFA quantifications for the bovine tendon specimen: (a) an experimental photo showing the longitudinal tendon axis of ~52� ,
(b) DC intensity versus polarizer angle plots for the selected 3 � 3 grid pixel points, (see red dots in (a)). The angle corresponding to
the peak intensity, indicated by the red dashed line, is the quantified fiber orientation angle qfiber. Colormaps of (c) qfiber and (d) DOA
at different longitudinal strain levels.

Fig. 2. CFA quantifications for porcine mitral valve anterior leaflet specimen #1 (MVAL-1): (a) schematic of the biaxial mechanical
testing in conjunction with polarized spatial frequency domain imaging-based collagen CFA quantification, and (b) the quantified
collagen fiber orientation (black dashed lines) and the degree of optical anisotropy (colormaps) of the tissue at various loading
conditions. Note that warmer colors denote a better aligned collagen fiber network.
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Fig. 3. CFA quantifications for porcine mitral valve anterior leaflet specimen #2 (MVAL-2): the quantified collagen fiber orientation
(black dashed lines) and the degree of optical anisotropy (colormaps) of the tissue at various loading conditions. Note that warmer
colors denote a better aligned collagen fiber network.
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biaxial mechanical testing system (BioTester, CellScale, Canada) and an in-house polarized spatial
frequency domain imaging (pSFDI) device, was used.

In brief, the bovine tendon sample was then mounted to the BioTester via the CellScale clamp
mounting fixture and subjected to various longitudinal strains (0%, 1%, 2% and 3%) along the tendon
tissue's length direction (Fig. 1a). At each strain state, the collagen fiber orientation and the DOAwithin
the sample were quantified using the integrated instrument with a spatial frequency of fx¼0.20 mm�1.
Sample hydration was maintained by soaking the sample in PBS solution during the imaging tests.

For mitral valve leaflet testing, the entire anterior leaflet tissue samples were excised from the
porcine mitral heart valve were mounted to the BioTester using the CellScale BioRakes fixture to create
an effective testing region of 10�10 mm (Fig. 2a). The MVAL tissue sample's circumferential and radial
directions were aligned with the x- and y-axes of the tester, respectively, during mounting. The tissues
were then immersed in a PBS solution at 37 �C for the duration of mechanical testing to emulate the
valve's physiological conditions. Prior to applying the mechanical testing protocols, the tissue samples
Fig. 4. (a) Trimetric view of the integrated opto-mechanical system used in the collection of the presented data, and (b) schematic of
a co-polarized pSFDI system, showing the optical components (DLP project, CCD camera, rotational polarizer), the passage of light,
and the scattering from the fibrous tissue microstructure.
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were preconditioned to restore their in vivo functional state using a standard force-controlled pre-
conditioning protocol with a targeted maximum force of 1 N applied in both the circumferential and
radial directions associated with the tissue's collagen fiber networks [8,9]. The targeted loading of 1 N
was determined based on an assumed physiological membrane tension of 100 N/m [10,11] and a 10mm
effective edge length. The MVAL tissue sample was subjected to various biaxial loads: Tcirc:Trad¼1:1
(equibiaxial loading), Tcirc:Trad¼1:0.25, and Tcirc:Trad¼0.25:1, where Tcirc and Trad are the membrane
tensions applied in the MVAL tissue's circumferential and radial directions, respectively. During pSFDI
imaging tests, a spatial frequency of fx¼0.27 mm�1 was adopted.
2.4. pSFDI imaging procedure

The pSFDI imaging technique combines the ability of co-polarized imaging to quantify the bire-
fringent fiber structures with the depth-discrimination capabilities of SFDI. Interested readers can refer
tomore details in Refs. [1,12e14]. The pSFDI system (Fig. 4b) utilized an LED-driven, micromirror-based
pattern projection system (Texas Instruments, Dallas, TX) with a projection wavelength of 490 nm
(cyan) and a 5-Megapixel CCD camera (Basler, Germany) with lens of f/1.9 and an exposure time of
50 ms. For controlled rotational polarization, our pSFDI system employed a nanoparticle linear
polarizer with a diameter of 25 mm mounted into a rotational servo motor with a 0.1� resolution
(Thorlabs, Newton, NJ). During pSFDI imaging, three phase-shifted images were projected sequentially,
through a polarizer at angle qpolarizer, and onto the tissue sample. The reflected light from the sample
passed back through the same polarizer and was captured by the CCD camera. This projection-capture
sequence was repeated at each of the 37 discrete polarization increments (5� increments from 0� to
180�) using an in-house LabView controlling program (National Instruments, Austin, TX).
2.5. pSFDI image data analysis e quantification of fiber orientation angle qfiber and degree of optical
anisotropy (DOA)

After pSFDI imaging, the 37 phase-shifted images were first smoothed via convolution with a
normalized 5� 5 uniform kernel andwere then combined at each pixel and polarization state to obtain
the resultant DC and AC intensities: the DC intensity IDC which provides equal weighting for each
reflected photon by representing the conventional diffuse reflectance image, and the AC intensity IAC,
which signifies the differences between the spatially-modulated intensity patterns.

IDC ¼
I0� þ I120� þ I240�

3
; and IAC ¼

ffiffiffi
2

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðI0� � I120� Þ2 þ ðI120� � I240� Þ2 þ ðI240� � I0� Þ2

q
: (1)

Herein, I0�, I120�, and I240� are the pixel-wise intensity corresponding to the three phase shifts,
respectively. The global maxima of these intensity functions occurs when the polarizer transmission
axis qpolarizer is parallel to and perpendicular to the fiber orientation angle qfiber, respectively (Fig. 1b).

Quantitatively, the birefringent reflected intensity Iout of a group of collagen fibers (Fig. 4b) can be
described by the following 3-term Fourier cosine series:

Iout
tsys

¼ a0 þ a2
h
2
�
qfiber � qpolarizer

�i
þ a4

h
4
�
qfiber � qpolarizer

�i
; (2)

where tsys is a bulk systemic coefficient encompassing non-birefringent intensitymodifiers, such as the
aperture of the camera, and a0, a2, and a4 are the three Fourier coefficients. The magnitudes of the
optical anisotropies provide a means of quantitatively examining the local dispersion of the collagen
fibers, which is expressed in the degree of optical anisotropy (DOA), i.e.,

DOA¼ a2 þ a4
a0 þ a2 þ a4

: (3)

Please refer to more details about the step-by-step algorithmic procedures in Section 2.3 of [1].
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