2,750 research outputs found

    Effective gauge group of pure loop quantum gravity is SO(3): New estimate of the Immirzi parameter

    Full text link
    We argue that the effective gauge group for {\it pure} four-dimensional loop quantum gravity(LQG) is SO(3) (or SO(3,C)SO(3,C)) instead of SU(2) (or SL(2,C)SL(2,C)). As a result, links with half-integer spins in spin network states are not realized for {\it pure} LQG, implying a modification of the spectra of area and volume operators. Our observations imply a new value of γ0.170\gamma \approx 0.170 for the Immirzi parameter which is obtained from matching the Bekenstein-Hawking entropy to the number of states from LQG calculations. Moreover, even if the dominant contribution to the entropy is not assumed to come from configurations with the minimum spins, the results of both pure LQG and the supersymmetric extension of LQG can be made compatible when only integer spins are realized for the former, while the latter also contains half-integer spins, together with an Immirzi parameter for the supersymmetric case which is twice the value of the SO(3) theory. We also verify that the 1/2-{1/2} coefficient of logarithmic correction to the Bekenstein-Hawking entropy formula is robust, independent of whether only integer, or also half-integer spins, are realized.Comment: new value of Immirzi parameter is ~0.170; dominance of miminum spin configurations is not assumed in comparing with Bekenstein-Hawking formula; typos corrected. Version pressed in PL

    Understanding the T cell immune response in SARS coronavirus infection

    Get PDF
    10.1038/emi.2012.26Emerging Microbes and Infections1Article number e23, 6 page

    Loss of survival factors and activation of inflammatory cascades in brain sympathetic centers in type 1 diabetic mice

    Get PDF
    Neuroinflammation and neurodegeneration have been observed in the brain in type 1 diabetes (T1D). However, little is known about the mediators of these effects. In T1D mice with 12- and 35-wk duration of diabetes we examined two mechanisms of neurodegeneration, loss of the neuroprotective factors insulin-like growth factor I (IGF-I) and IGF-binding protein-3 (IGFBP-3) and changes in indoleamine 2,3-dioxygenase (IDO) expression in the brain, and compared the response to age-matched controls. Furthermore, levels of matrix metalloproteinase-2 (MMP-2), nucleoside triphosphate diphosphohydrolase-1 (CD39), and ionized calcium-binding adaptor molecule 1 (Iba-1) were utilized to assess inflammatory changes in astrocytes, microglia, and blood vessels. In the diabetic hypothalamus (HYPO), we observed 20% reduction in neuronal soma diameter (P<0.05) and reduced neuronal expression of IGFBP-3 (-32%, P<0.05) and IGF-I (-15%, P<0.05) compared with controls at 35 wk. In diabetic HYPO, MMP-2 expression was increased in astrocytes (46%, P<0.01), and IDO⁺ cell density rose by (62%, P<0.05). CD39 expression dropped by 30% (P<0.05) in microglia and blood vessels. With 10 wk of systemic treatment using minocycline, an anti-inflammatory agent that crosses the blood-brain barrier, MMP-2, IDO, and CD39 levels normalized (P<0.05). Our results suggest that increased IDO and early loss of CD39⁺ protective cells lead to activation of inflammation in sympathetic centers of the CNS. As a downstream effect, the loss of the neuronal survival factors IGFBP-3 and IGF-I and the neurotoxic products of the kynurenine pathway contribute to the loss of neuronal density observed in the HYPO in T1D

    Mindfulness-based cognitive therapy v. group psychoeducation for people with generalised anxiety disorder: randomised controlled trial

    Get PDF
    Background: Research suggests that an 8-week mindfulness-based cognitive therapy (MBCT) course may be effective for generalised anxiety disorder (GAD). Aims: To compare changes in anxiety levels among participants with GAD randomly assigned to MBCT, cognitive–behavioural therapy-based psychoeducation and usual care. Method: In total, 182 participants with GAD were recruited (trial registration number: CUHK_CCT00267) and assigned to the three groups and followed for 5 months after baseline assessment with the two intervention groups followed for an additional 6 months. Primary outcomes were anxiety and worry levels. Results: Linear mixed models demonstrated significant group × time interaction (F(4,148) = 5.10, P = 0.001) effects for decreased anxiety for both the intervention groups relative to usual care. Significant group × time interaction effects were observed for worry and depressive symptoms and mental health-related quality of life for the psychoeducation group only. Conclusions: These results suggest that both of the interventions appear to be superior to usual care for the reduction of anxiety symptoms

    Bioengineered Bruch's-like extracellular matrix promotes retinal pigment epithelial differentiation

    Get PDF
    In the eye, the retinal pigment epithelium (RPE) adheres to a complex protein matrix known as Bruch's membrane (BrM). The aim of this study was to provide enriched conditions for RPE cell culture through the production of a BrM-like matrix. Our hypothesis was that a human RPE cell line would deposit an extracellular matrix (ECM) resembling BrM. The composition and structure of ECM deposited by ARPE19 cells (ARPE19-ECM) was characterized. To produce ARPE19-ECM, ARPE19 cells were cultured in the presence dextran sulphate. ARPE19-ECM was decellularized using deoxycholate and characterized by immunostaining and western blot analysis. Primary human RPE and induced pluripotent stem cells were seeded onto ARPE19-ECM or geltrex coated surfaces and examined by microscopy or RT-PCR. Culture of ARPE19 cells with dextran sulphate promoted nuclear localization of SOX2, formation of tight junctions and deposition of ECM. ARPE19 cells deposited ECM proteins found in the inner layers of BrM, including fibronectin, vitronectin, collagens IV and V as well as laminin-alpha-5, but not those found in the middle elastic layer (elastin) or the outer layers (collagen VI). ARPE19-ECM promoted pigmentation in human RPE and pluripotent stem cell cultures. Expression of RPE65 was significantly increased on ARPE19-ECM compared with geltrex in differentiating pluripotent stem cell cultures. ARPE19 cells deposit ECM with a composition and structure similar to BrM in the retina. Molecular cues present in ARPE19-ECM promote the acquisition and maintenance of the RPE phenotype. Together, these results demonstrate a simple method for generating a BrM-like surface for enriched RPE cell cultures

    Mix and Match: Coassembly of Amphiphilic Dendrimers and Phospholipids Creates Robust, Modular, and Controllable Interfaces

    Get PDF
    Self-assembly of supramolecular structures has become an attractive means to create new biologically inspired materials and interfaces. We report the first robust hybrid bilayer systems readily coassembled from amphiphilic dendrimers and a naturally occurring phospholipid. Both concentration and generation of the dendrimers have direct impacts on the biophysical properties of the coassemblies. Raising the dendrimer concentration increases the hybrid bilayer stability, while changes in the generation and the concentration of the embedded dendrimers impact the fluidity of the coassembled systems. Multivalent dendrimer amine terminals allow for nondestructive in situ derivatization, providing a convenient approach to decorate and modulate the local environment of the hybrid bilayer. The coassembly of lipid/dendrimer interfaces offers a unique platform for the creation of hybrid systems with modular and precisely controllable behavior for further applications in sensing and drug delivery

    Improved theoretical guarantee for rank aggregation via spectral method

    Full text link
    Given pairwise comparisons between multiple items, how to rank them so that the ranking matches the observations? This problem, known as rank aggregation, has found many applications in sports, recommendation systems, and other web applications. As it is generally NP-hard to find a global ranking that minimizes the mismatch (known as the Kemeny optimization), we focus on the Erd\"os-R\'enyi outliers (ERO) model for this ranking problem. Here, each pairwise comparison is a corrupted copy of the true score difference. We investigate spectral ranking algorithms that are based on unnormalized and normalized data matrices. The key is to understand their performance in recovering the underlying scores of each item from the observed data. This reduces to deriving an entry-wise perturbation error bound between the top eigenvectors of the unnormalized/normalized data matrix and its population counterpart. By using the leave-one-out technique, we provide a sharper \ell_{\infty}-norm perturbation bound of the eigenvectors and also derive an error bound on the maximum displacement for each item, with only Ω(nlogn)\Omega(n\log n) samples. Our theoretical analysis improves upon the state-of-the-art results in terms of sample complexity, and our numerical experiments confirm these theoretical findings.Comment: 29 pages, 6 figure

    The human primary visual cortex (V1) encodes the perceived position of static but not moving objects

    Get PDF
    Brain activity in retinotopic cortex reflects illusory changes in stimulus position. Is this neural signature a general code for apparent position? Here we show that responses in primary visual cortex (V1) are consistent with perception of the Muller-Lyer illusion; however, we found no such signature for another striking illusion, the curveball effect. This demonstrates that V1 does not encode apparent position per se

    A proteomic study of human Merkel Cell Carcinoma

    Get PDF
    Merkel Cell Carcinoma (MCC) is an aggressive neuroendocrine cancer of the skin. The incidence has been quadrupled with a 5-year mortality rate of 46%, presently there is no cure for metastatic disease. Despite the contribution of Merkel cell polyomavirus, the molecular events of MCC carcinogenesis are poorly defined. To better understand MCC carcinogensis, we have performed the first quantitative proteomic comparison of formalin-fixed, paraffin-embedded (FFPE) MCC tissues using another neuroendocrine tumor (carcinoid tumor of the lung) as controls. Bioinformatic analysis of the proteomic data has revealed that MCCs carry distinct protein expression patterns. Further analysis of significantly over-expressed proteins suggested the involvement of MAPK, PI3K/Akt/mTOR, wnt, and apoptosis signaling pathways. Our previous study and that from others have shown mTOR activation in MCCs. Therefore, we have focused on two downstream molecules of the mTOR pathway, lactate dehydrogenase B (LDHB) and heterogeneous ribonucleoprotein F (hnRNPF). We confirm over-expression of LDHB and hnRNPF in two primary human MCC cell lines, 16 fresh tumors, and in the majority of 80 tissue microarray samples. Moreover, mTOR inhibition suppresses LDHB and hnRNPF expression in MCC cells. The results of the current study provide insight into MCC carcinogenesis and provide rationale for mTOR inhibition in pre-clinical studies
    corecore