29 research outputs found
A Small Genomic Region Containing Several Loci Required for Gastrulation in Drosophila
Genetic screens in Drosophila designed to search for loci involved in gastrulation have identified four regions of the genome that are required zygotically for the formation of the ventral furrow. For three of these, the genes responsible for the mutant phenotypes have been found. We now describe a genetic characterization of the fourth region, which encompasses the cytogenetic interval 24C3-25B, and the mapping of genes involved in gastrulation in this region. We have determined the precise breakpoints of several existing deficiencies and have generated new deficiencies. Our results show that the region contains at least three different loci associated with gastrulation effects. One maternal effect gene involved in ventral furrow formation maps at 24F but could not be identified. For a second maternal effect gene which is required for germ band extension, we identify a candidate gene, CG31660, which encodes a G protein coupled receptor. Finally, one gene acts zygotically in ventral furrow formation and we identify it as Traf4
SEASTAR: a mission to study ocean submesoscale dynamics and small-scale atmosphere-ocean processes in coastal, shelf and polar seas
High-resolution satellite images of ocean color and sea surface temperature reveal an abundance of ocean fronts, vortices and filaments at scales below 10 km but measurements of ocean surface dynamics at these scales are rare. There is increasing recognition of the role played by small scale ocean processes in ocean-atmosphere coupling, upper-ocean mixing and ocean vertical transports, with advanced numerical models and in situ observations highlighting fundamental changes in dynamics when scales reach 1 km. Numerous scientific publications highlight the global impact of small oceanic scales on marine ecosystems, operational forecasts and long-term climate projections through strong ageostrophic circulations, large vertical ocean velocities and mixed layer re-stratification. Small-scale processes particularly dominate in coastal, shelf and polar seas where they mediate important exchanges between land, ocean, atmosphere and the cryosphere, e.g., freshwater, pollutants. As numerical models continue to evolve toward finer spatial resolution and increasingly complex coupled atmosphere-wave-ice-ocean systems, modern observing capability lags behind, unable to deliver the high-resolution synoptic measurements of total currents, wind vectors and waves needed to advance understanding, develop better parameterizations and improve model validations, forecasts and projections. SEASTAR is a satellite mission concept that proposes to directly address this critical observational gap with synoptic two-dimensional imaging of total ocean surface current vectors and wind vectors at 1 km resolution and coincident directional wave spectra. Based on major recent advances in squinted along-track Synthetic Aperture Radar interferometry, SEASTAR is an innovative, mature concept with unique demonstrated capabilities, seeking to proceed toward spaceborne implementation within Europe and beyond
Recommended from our members
Dioscoreaccae, yams, ovy, oviala, angona
A new description of the Dioscoreaceae of Madagascar including several recently discovered species
Internet Censorship and the Intraregional Geopolitical Conflicts in the Middle East and North Africa
Mitochondrial DNA analyses of the saltwater crocodile (Crocodylus porosus) from the Northern Territory of Australia
The saltwater crocodile is distributed throughout south-east Asia and Australia. In Australia, it is most abundant in the Northern Territory and Queensland, where it is sustainably farmed for its skins and meat. The aim of this study was to elucidate the relationships and genetic structure among saltwater crocodiles from the Northern Territory of Australia using mitochondrial control region sequences from 61 individuals, representing nine river basins and six of unknown origin, as well as published sequences from other regions. Eight mitochondrial control region haplotypes were identified among both published and novel sequences. Three of the haplotypes appear to be restricted to specimens from northern Australia, with a single haplotype being the most widely dispersed across all river basins. Although Analysis of Molecular Variance provides some support for differentiation among river basins, the frequency of shared haplotypes among these geographical units and median-joining network analysis do not support a clear genetic structure or phylogeographic pattern for saltwater crocodiles in the Northern Territory. The results of this study will assist in furthering our understanding of the genetic diversity of wild saltwater crocodile populations used for ranching in the Northern Territory, as well as providing a framework for assessing the origin of unknown specimens in the future.8 page(s